Information retrieval models for recommender systems
- Valcarce, Daniel
- Álvaro Barreiro García Director
- Javier Parapar Codirector
Universidad de defensa: Universidade da Coruña
Fecha de defensa: 08 de mayo de 2019
- Gabriella Pasi Presidente/a
- Fidel Cacheda Secretario
- Pablo Castells Azpilicueta Vocal
Tipo: Tesis
Resumen
La recuperación de información da respuesta a las necesidades de información de los usuarios proporcionando información relevante, pero requiere que los usuarios expresen explícitamente sus necesidades de información. Por el contrario, los sistemas de recomendación ofrecen sugerencias personalizadas de elementos automáticamente. En última instancia, ambos campos ayudan a los usuarios a lidiar con la sobrecarga de información al proporcionarles información relevante. Esta tesis tiene como propósito explorar las conexiones entre la recuperación de información y los sistemas de recomendación. Nuestro objetivo es diseñar modelos de recomendación inspirados en técnicas de recuperación de información. Comenzamos tomando prestadas ideas de la literatura de evaluación en recuperación de información para analizar las métricas de evaluación en los sistemas de recomendación. En segundo lugar, estudiamos la aplicabilidad de los modelos de retroalimentación de pseudo-relevancia a diferentes tareas de recomendación. Investigamos la tarea de recomendar listas ordenadas de elementos, pero también exploramos el problema recientemente formulado de formación de grupos usuario-elemento y proponemos una tarea novedosa basada en la liquidación de los elementos de la larga cola. Tercero, explotamos modelos de recuperación ad hoc para calcular vecindarios en un escenario de filtrado colaborativo. En cuarto lugar, exploramos la dirección opuesta adaptando un método eficaz de recomendación a la retroalimentación de pseudo-relevancia. Finalmente, discutimos los resultados y presentamos nuestras conclusiones. En resumen, esta tesis doctoral adapta varios modelos de recuperación de información para su uso como sistemas de recomendación. Nuestra investigación muestra que muchos modelos de recuperación de información se pueden aplicar para tratar diferentes tareas de recomendación. Además, comprobamos que tomar el camino contrario también es posible. Una experimentación exhaustiva confirma que los modelos propuestos son competitivos. Finalmente, también realizamos un análisis teórico de algunos modelos para explicar su efectividad.