Ángel Daniel
Arós Rodríguez
Profesor Titular de Universidad
Publicaciones (41) Publicaciones de Ángel Daniel Arós Rodríguez
2024
-
A two-dimensional elastic contact problem with unilateral constraints
Mathematics and Mechanics of Solids
2022
-
VISCOELASTIC ELLIPTIC MEMBRANE SHELLS ON BILATERAL FRICTIONAL CONTACT: AN ASYMPTOTIC APPROACH
Journal of Nonlinear and Variational Analysis, Vol. 6, Núm. 5, pp. 441-460
2021
-
Asymptotic Analysis of Elliptic Membrane Shells in Thermoelastodynamics
Journal of Elasticity, Vol. 143, Núm. 2, pp. 385-409
-
Mathematical and asymptotic analysis of thermoelastic shells in normal damped response contact
Communications in Nonlinear Science and Numerical Simulation, Vol. 103
-
On the Justification of Koiter’s Equations for Viscoelastic Shells
Applied Mathematics and Optimization, Vol. 84, Núm. 2, pp. 2221-2243
2019
-
Asymptotic analysis of unilateral contact problems for linearly elastic shells: Error estimates in the membrane case
Nonlinear Analysis: Real World Applications, Vol. 48, pp. 40-53
-
Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness
Lighting Research and Technology, Vol. 51, Núm. 7, pp. 1092-1107
-
On the justification of viscoelastic flexural shell equations
Computers and Mathematics with Applications, Vol. 77, Núm. 11, pp. 2933-2942
2018
-
Asymptotic analysis of linearly elastic shells in normal compliance contact: convergence for the elliptic membrane case
Zeitschrift fur Angewandte Mathematik und Physik, Vol. 69, Núm. 5
-
Correction to: Asymptotic analysis of linearly elastic shells in normal compliance contact: convergence for the elliptic membrane case (Zeitschrift für angewandte Mathematik und Physik, (2018), 69, 5, (115), 10.1007/s00033-018-1008-8)
Zeitschrift fur Angewandte Mathematik und Physik
-
Linear viscoelastic shells: An asymptotic approach
Asymptotic Analysis, Vol. 107, Núm. 3-4, pp. 169-201
-
Mathematical and numerical analysis of an obstacle problem for elastic piezoelectric beams
Mathematics and Mechanics of Solids, Vol. 23, Núm. 3, pp. 262-278
-
Mathematical justification of the obstacle problem for elastic elliptic membrane shells
Applicable Analysis, Vol. 97, Núm. 8, pp. 1261-1280
-
Models of Elastic Shells in Contact with a Rigid Foundation: An Asymptotic Approach
Journal of Elasticity, Vol. 130, Núm. 2, pp. 211-237
-
On the Justification of Viscoelastic Elliptic Membrane Shell Equations
Journal of Elasticity, Vol. 130, Núm. 1, pp. 85-113
2017
-
Analysis of a dynamic viscoelastic-viscoplastic piezoelectric contact problem
ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 51, Núm. 2, pp. 565-586
-
Mathematical justification of a viscoelastic elliptic membrane problem
Comptes Rendus - Mecanique, Vol. 345, Núm. 12, pp. 824-831
-
Mathematical justification of an elastic elliptic membrane obstacle problem
Comptes Rendus - Mecanique, Vol. 345, Núm. 2, pp. 153-157
2016
-
A contact model for piezoelectric beams
IFIP Advances in Information and Communication Technology
-
A high order model for piezoelectric rods: An asymptotic approach
International Journal of Solids and Structures, Vol. 81, pp. 294-310