Laura
Morán Fernández
Profesora Axudante Doutora
María Amparo
Alonso Betanzos
Catedrática de Universidade
Publicacións nas que colabora con María Amparo Alonso Betanzos (21)
2024
-
A review of green artificial intelligence: Towards a more sustainable future
Neurocomputing, Vol. 599
2022
-
Feature Selection: From the Past to the Future
Learning and Analytics in Intelligent Systems (Springer Nature), pp. 11-34
-
How important is data quality? Best classifiers vs best features
Neurocomputing, Vol. 470, pp. 365-375
-
Low-precision feature selection on microarray data: an information theoretic approach
Medical and Biological Engineering and Computing, Vol. 60, Núm. 5, pp. 1333-1345
2020
-
Do we need hundreds of classifiers or a good feature selection?
ESANN 2020 - Proceedings, 28th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
-
Feature selection with limited bit depth mutual information for portable embedded systems
Knowledge-Based Systems, Vol. 197
-
When Size Matters: Markov Blanket with Limited Bit Depth Conditional Mutual Information
Communications in Computer and Information Science
2019
-
A Review of Microarray Datasets: Where to Find Them and Specific Characteristics
Methods in Molecular Biology (Humana Press Inc.), pp. 65-85
-
Distributed classification based on distances between probability distributions in feature space
Information Sciences, Vol. 496, pp. 431-450
-
Feature Selection Applied to Microarray Data
Methods in Molecular Biology (Humana Press Inc.), pp. 123-152
2018
-
Análisis de algoritmos de cuantificación basados en ajuste de distribuciones
XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA 2018): avances en Inteligencia Artificial. 23-26 de octubre de 2018 Granada, España
-
Preprocessing in High Dimensional Datasets
Intelligent Systems Reference Library (Springer Science and Business Media Deutschland GmbH), pp. 247-271
2017
-
A distributed approach for classification using distance metrics
ESANN 2017 - Proceedings, 25th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
-
Can classification performance be predicted by complexity measures? A study using microarray data
Knowledge and Information Systems, Vol. 51, Núm. 3, pp. 1067-1090
-
Centralized vs. distributed feature selection methods based on data complexity measures
Knowledge-Based Systems, Vol. 117, pp. 27-45
-
On the use of different base classifiers in multiclass problems
Progress in Artificial Intelligence, Vol. 6, Núm. 4, pp. 315-323
2016
-
Data complexity measures for analyzing the effect of SMOTE over microarrays
ESANN 2016 - 24th European Symposium on Artificial Neural Networks
-
Selection of the best base classifier in one-versus-one using data complexity measures
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
2015
-
A time efficient approach for distributed feature selection partitioning by features
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
-
An insight on complexity measures and classification in microarray data
Proceedings of the International Joint Conference on Neural Networks