Publicaciones en colaboración con investigadores/as de Universidade de Vigo (13)

2022

  1. ON EXISTENCE AND NUMERICAL APPROXIMATION IN PHASE-LAG THERMOELASTICITY WITH TWO TEMPERATURES

    Discrete and Continuous Dynamical Systems - Series B, Vol. 27, Núm. 4, pp. 2221-2245

2020

  1. Analysis of a thermoelastic Timoshenko beam model

    Acta Mechanica, Vol. 231, Núm. 10, pp. 4111-4127

  2. Optimum configuration of the secondary artillery of the f-110 spanish frigates

    Journal of Ship Production and Design, Vol. 36, Núm. 4, pp. 227-239

2019

  1. A dynamic problem involving a coupled suspension bridge system: Numerical analysis and computational experiments

    Evolution Equations and Control Theory, Vol. 8, Núm. 3, pp. 489-502

  2. A thermoelastic problem with diffusion, microtemperatures, and microconcentrations

    Acta Mechanica, Vol. 230, Núm. 1, pp. 31-48

  3. Analysis of a multidimensional thermoviscoelastic contact problem under the Green–Lindsay theory

    Journal of Computational and Applied Mathematics, Vol. 345, pp. 224-246

  4. Dynamics of nonlinear thermoelastic double-beam systems

    Quarterly Journal of Mechanics and Applied Mathematics, Vol. 72, Núm. 2, pp. 235-259

  5. Existence, stability and numerical results for a Timoshenko beam with thermodiffusion effects

    Zeitschrift fur Angewandte Mathematik und Physik, Vol. 70, Núm. 4

  6. Numerical analysis of a thermoelastic problem with dual-phase-lag heat conduction

    Applied Numerical Mathematics, Vol. 140, pp. 76-90

  7. Numerical resolution of an exact heat conduction model with a delay term

    Journal of Applied Analysis and Computation, Vol. 9, Núm. 1, pp. 332-344

2018

  1. Numerical analysis of a dynamic problem involving bulk-surface surfactants

    Journal of Mathematical Chemistry, Vol. 56, Núm. 1, pp. 120-139

2017

  1. Analysis of a dynamic viscoelastic-viscoplastic piezoelectric contact problem

    ESAIM: Mathematical Modelling and Numerical Analysis, Vol. 51, Núm. 2, pp. 565-586

2013

  1. Dynamic vibrations of a damageable viscoelastic beam in contact with two stops

    Numerical Methods for Partial Differential Equations, Vol. 29, Núm. 2, pp. 647-666