Israel
Temprano Fariña
Investigador
University of Cambridge
Cambridge, Reino UnidoPublicaciones en colaboración con investigadores/as de University of Cambridge (29)
2024
-
Binder-Free Cnt Cathodes for Li-O2 Batteries with More Than One Life
Small Methods, Vol. 8, Núm. 1
-
Configuration of ammonia on Cu{311}: Infrared spectroscopy and first-principles theory
Journal of Chemical Physics, Vol. 160, Núm. 5
-
Influence of Carbonate Electrolyte Solvents on Voltage and Capacity Degradation in Li-Rich Cathodes for Li-ion Batteries
Advanced Energy Materials, Vol. 14, Núm. 32
2023
-
Associative pyridinium electrolytes for air-tolerant redox flow batteries
Nature, Vol. 623, Núm. 7989, pp. 949-955
-
Recent Progress in Developing a LiOH-Based Reversible Nonaqueous Lithium–Air Battery
Advanced Materials, Vol. 35, Núm. 1
-
Solvent-dependent iodide interactions in LiO2 electrolytes - a molecular dynamics study
Faraday Discussions, Vol. 248, pp. 145-159
-
Synergistic Degradation Mechanism in Single Crystal Ni-Rich NMC//Graphite Cells
ACS Energy Letters, Vol. 8, Núm. 12, pp. 5025-5031
2022
-
Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries
ACS Applied Materials and Interfaces, Vol. 14, Núm. 11, pp. 13206-13222
-
Enhancing the capacity of supercapacitive swing adsorption CO2 capture by tuning charging protocols
Nanoscale, Vol. 14, Núm. 22, pp. 7980-7984
-
Onset Potential for Electrolyte Oxidation and Ni-Rich Cathode Degradation in Lithium-Ion Batteries
ACS Energy Letters, Vol. 7, Núm. 10, pp. 3524-3530
-
Partial reduction of NO to N2O on Cu{311}: role of intermediate N2O2
Catalysis Science and Technology
2021
-
Electrochemical Utilization of Iron IV in the Li1.3Fe0.4Nb0.3O2 Disordered Rocksalt Cathode
Batteries and Supercaps, Vol. 4, Núm. 5, pp. 771-777
-
On the Solvation of Redox Mediators and Implications for their Reactivity in Li-Air Batteries
Journal of the Electrochemical Society, Vol. 168, Núm. 3
2020
-
Co3O4-Catalyzed LiOH Chemistry in Li-O2Batteries
ACS Energy Letters, Vol. 5, Núm. 12, pp. 3681-3691
-
Electrolyte oxidation pathways in lithium-ion batteries
Journal of the American Chemical Society, Vol. 142, Núm. 35, pp. 15058-15074
-
In situ NMR metrology reveals reaction mechanisms in redox flow batteries
Nature, Vol. 579, Núm. 7798, pp. 224-228
-
Toward Reversible and Moisture-Tolerant Aprotic Lithium-Air Batteries
Joule, Vol. 4, Núm. 11, pp. 2501-2520
2019
-
Understanding LiOH Formation in a Li-O 2 Battery with LiI and H 2 O Additives
ACS Catalysis, Vol. 9, Núm. 1, pp. 66-77
2018
-
Cycling non-aqueous lithium-air batteries with dimethyl sulfoxide and sulfolane co-solvent
Johnson Matthey Technology Review, Vol. 62, Núm. 3, pp. 332-340
2017
-
Activity of iron pyrite towards low-temperature ammonia production
Catalysis Today, Vol. 286, pp. 101-113