Publicaciones en colaboración con investigadores/as de Universidade de Santiago de Compostela (60)

2024

  1. Mathematical perspective on XFEM implementation for models involving contribution on interfaces

    Mathematics and Computers in Simulation, Vol. 218, pp. 266-291

2022

  1. VISCOELASTIC ELLIPTIC MEMBRANE SHELLS ON BILATERAL FRICTIONAL CONTACT: AN ASYMPTOTIC APPROACH

    Journal of Nonlinear and Variational Analysis, Vol. 6, Núm. 5, pp. 441-460

2020

  1. Determination of Young modulus by using Rayleigh waves

    Applied Mathematical Modelling, Vol. 77, pp. 439-455

2019

  1. Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness

    Lighting Research and Technology, Vol. 51, Núm. 7, pp. 1092-1107

  2. On the justification of viscoelastic flexural shell equations

    Computers and Mathematics with Applications, Vol. 77, Núm. 11, pp. 2933-2942

  3. Rigorous justification of the asymptotic model describing a curved-pipe flow in a time-dependent domain

    ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, Vol. 99, Núm. 1

2018

  1. Linear viscoelastic shells: An asymptotic approach

    Asymptotic Analysis, Vol. 107, Núm. 3-4, pp. 169-201

  2. Numerical analysis of a dynamic problem involving bulk-surface surfactants

    Journal of Mathematical Chemistry, Vol. 56, Núm. 1, pp. 120-139

  3. On the Justification of Viscoelastic Elliptic Membrane Shell Equations

    Journal of Elasticity, Vol. 130, Núm. 1, pp. 85-113

2017

  1. Mathematical justification of a viscoelastic elliptic membrane problem

    Comptes Rendus - Mecanique, Vol. 345, Núm. 12, pp. 824-831

2016

  1. A high order model for piezoelectric rods: An asymptotic approach

    International Journal of Solids and Structures, Vol. 81, pp. 294-310

  2. A new methodology for element partition and integration procedures for XFEM

    Finite Elements in Analysis and Design, Vol. 113, pp. 1-13

  3. Asymptotic analysis of a Newtonian fluid in a curved pipe with moving walls

    AIP Conference Proceedings

  4. Asymptotic analysis of a viscous flow in a curved pipe with elastic walls

    SEMA SIMAI Springer Series (Springer International Publishing), pp. 73-87

  5. Characterization of the Bernoulli–Navier model for a rectangular section beam as the limit of the Kirchhoff–Love model for a plate

    Zeitschrift fur Angewandte Mathematik und Physik, Vol. 67, Núm. 5

2015

  1. A bending-stretching model in adhesive contact for elastic rods obtained by using asymptotic methods

    Nonlinear Analysis: Real World Applications, Vol. 22, pp. 632-644

  2. A model for bending and stretching of piezoelectric rods obtained by asymptotic analysis

    Zeitschrift fur Angewandte Mathematik und Physik, Vol. 66, Núm. 3, pp. 1207-1232

2013

  1. Asymptotic derivation of frictionless contact models for elastic rods on a foundation with normal compliance

    Nonlinear Analysis: Real World Applications, Vol. 14, Núm. 1, pp. 852-866

  2. Asymptotic derivation of quasistatic frictional contact models with wear for elastic rods

    Journal of Mathematical Analysis and Applications, Vol. 401, Núm. 2, pp. 641-653

2012

  1. Mathematical justification of Kelvin-Voigt beam models by asymptotic methods

    Zeitschrift fur Angewandte Mathematik und Physik, Vol. 63, Núm. 3, pp. 529-556