High dimensional single-index mixture cure models

  1. Piñeiro Lamas, Beatriz
Dirigida por:
  1. Ricardo Cao Abad Director
  2. Ana López-Cheda Directora

Universidad de defensa: Universidade da Coruña

Fecha de defensa: 28 de mayo de 2024

Tribunal:
  1. Ingrid Van Keilegom Presidente/a
  2. M. A. Jácome Secretaria
  3. Luís Meira Machado Vocal

Tipo: Tesis

Resumen

En análisis de supervivencia hay situaciones en las cuales no todos los sujetos son susceptibles al evento final. Por ejemplo, si el evento es un efecto adverso de una terapia oncológica, habrá pacientes (considerados como curados) que nunca lo experimentarán. Los modelos de curación de tipo mixtura permiten estimar la probabilidad de curación y la función de supervivencia de los sujetos susceptibles. En la literatura, la estimaciuñin no paramétrica de ambas funciones se limita a covariables unidimensionales. En esta tesis se proponen los modelos single-index de curación de tipo mixtura. Estos permiten trabajar con una covariable vectorial y asumen que la función de supervivencia depende de ella mediante una combinación lineal que se puede estimar por máxima verosimilitud. Además, se introduce un estimador no paramétrico para la funci´on de densidad de los susceptibles y se obtiene su representación iid. Finalmente, los modelos propuestos se extienden a covariables funcionales y se implementa un algoritmo de preprocesamiento de imágenes médicas. La metodología se aplica a datos de cardiotoxicidad con el objetivo de determinar qué factores afectan (y cómo) a la probabilidad de experimentarla y al tiempo que tarda en manifestarse. Conocer los factores de riesgo podría conducir a una medicina preventiva personalizada.