Priors for Diversity and Novelty on Neural Recommender Systems
- Alfonso Landin 1
- Daniel Valcarce
- Javier Parapar 1
- Álvaro Barreiro
-
1
Universidade da Coruña
info
- Alberto Alvarellos González (ed. lit.)
- José Joaquim de Moura Ramos (ed. lit.)
- Beatriz Botana Barreiro (ed. lit.)
- Javier Pereira Loureiro (ed. lit.)
- Manuel F. González Penedo (ed. lit.)
Editorial: MDPI
ISBN: 978-3-03921-444-0, 978-3-03921-443-3
Año de publicación: 2019
Congreso: XoveTIC (2. 2019. A Coruña)
Tipo: Aportación congreso
Resumen
PRIN is a neural based recommendation method that allows the incorporation of item prior information into the recommendation process. In this work we study how the system behaves interms of novelty and diversity under different configurations of item prior probability estimations. Our results show the versatility of the framework and how its behavior can be adapted to the desiredproperties, whether accuracy is preferred or diversity and novelty are the desired properties, or how a balance can be achieved with the proper selection of prior estimations.