Sequence Tagging for Fast Dependency Parsing

  1. Michalina Strzyz
  2. David Vilares 1
  3. Carlos Gómez-Rodríguez 1
  1. 1 Universidade da Coruña
    info

    Universidade da Coruña

    La Coruña, España

    ROR https://ror.org/01qckj285

Libro:
XoveTIC 2019: The 2nd XoveTIC Conference (XoveTIC 2019), A Coruña, Spain, 5–6 September
  1. Alberto Alvarellos González (ed. lit.)
  2. José Joaquim de Moura Ramos (ed. lit.)
  3. Beatriz Botana Barreiro (ed. lit.)
  4. Javier Pereira Loureiro (ed. lit.)
  5. Manuel F. González Penedo (ed. lit.)

Editorial: MDPI

ISBN: 978-3-03921-444-0 978-3-03921-443-3

Año de publicación: 2019

Congreso: XoveTIC (2. 2019. A Coruña)

Tipo: Aportación congreso

Resumen

Dependency parsing has been built upon the idea of using parsing methods based on shift-reduce or graph-based algorithms in order to identify binary dependency relations between the words in a sentence. In this study we adopt a radically different approach and cast full dependency parsing as a pure sequence tagging task. In particular, we apply a linearization function to the tree that results in an output label for each token that conveys information about the word’s dependency relations. We then follow a supervised strategy and train a bidirectional long short-term memory network to learn to predict such linearized trees. Contrary to the previous studies attempting this, the results show that this approach not only leads to accurate but also fast dependency parsing. Furthermore, we obtain even faster and more accurate parsers by recasting the problem as multitask learning, with a twofold objective: to reduce the output vocabulary and also to exploit hidden patterns coming from a second parsing paradigm (constituent grammars) when used as an auxiliary task.