Artificial intelligence in paediatrics: Current events and challenges
- Galdo, Brais 12367
- Pazos, Carla 4
- Pardo, Jerónimo 6
- Solar, Alfonso 6
- Llamas, Daniel 267
- Fernández-Blanco, Enrique 1238
- Pazos, Alejandro 5
- 1 Universidad de A Coruña, A Coruña, Spain
- 2 INIBIC, A Coruña, Spain
- 3 RNASA-IMEDIR, A Coruña, Spain
- 4 New Vision University, Faculty of Medicine, Tiflis, Georgia
- 5 Medical University of Byalistok, Byalistok, Podlaquia, Poland
- 6 Complexo Hospitalario Universitario de A Coruña, A Coruña, Spain
- 7 Avances en Telemedicina e Informática Sanitaria, A Coruña, Spain
- 8 CITIC, A Coruña, Spain
ISSN: 2341-2879
Ano de publicación: 2024
Volume: 100
Número: 3
Páxinas: 195-201
Tipo: Artigo
Outras publicacións en: Anales de Pediatría (English Edition)
Resumo
This article examines the use of artificial intelligence (AI) in the field of paediatric care within the framework of the 7P medicine model (Predictive, Preventive, Personalized, Precise, Participatory, Peripheral and Polyprofessional). It highlights various applications of AI in the diagnosis, treatment and management of paediatric diseases as well as the role of AI in prevention and in the efficient management of health care resources and the resulting impact on the sustainability of public health systems. Successful cases of the application of AI in the paediatric care setting are presented, placing emphasis on the need to move towards a 7P health care model. Artificial intelligence is revolutionizing society at large and has a great potential for significantly improving paediatric care.
Referencias bibliográficas
- Ramón, (1894), Proceedings of the Royal Society of London, 55, pp. 444, 10.1098/rspl.1894.0063
- Hebb, (1949)
- Toole, (1996), IEEE Annals of the History of Computing, 18, pp. 4, 10.1109/85.511939
- Turing, (1936), Proc London Math Soc, 242, pp. 230
- Von Neumann, (1956), Automata studies, 34, pp. 43
- Wiener, (1948), Scientific American, 179, pp. 14, 10.1038/scientificamerican1148-14
- Cordeschi, (2002), vol. 28
- Craik, (1943), Cognit Psychol, 42, pp. 42
- McCulloch, (1943), Bull Math Biophys, 5, pp. 115, 10.1007/BF02478259
- McCarthy, (2006), AI magazine, 27, pp. 12
- Shortliffe, (1974)
- Weiss, (1978), Comput BiolMed, 8, pp. 25
- Widrow, (1990), Proceedings of the IEEE, 78, pp. 1415, 10.1109/5.58323
- Ethicists
- Sunarti, (2021), Gac Sanit, 35, pp. S67, 10.1016/j.gaceta.2020.12.019
- Hazlett, (2017), Nature, 542, pp. 348, 10.1038/nature21369
- Lord, (2020), Nat Rev Dis Primers, 6, pp. 1, 10.1038/s41572-019-0138-4
- LeCun, (2015), Nature, 521, pp. 436, 10.1038/nature14539
- Mammone, (2009), Wiley Interdisciplinary Reviews: Computational Statistics, 1, pp. 283, 10.1002/wics.49
- Aydın, (2016), J Med Syst, 40, pp. 1, 10.1007/s10916-016-0523-4
- Maratova, (2023), Front Endocrinol, 14, 10.3389/fendo.2023.1130580
- Ramgopal, (2020), Pediatrics, 146, 10.1542/peds.2019-4096
- Patel, (2018), Acad Emerg Med, 25, pp. 1463, 10.1111/acem.13655
- Saeidnia, (2023)
- Liang, (2019), Nat Med, 25, pp. 433, 10.1038/s41591-018-0335-9
- Guthold, (2020), Lancet Child Adolesc Health, 4, pp. 23, 10.1016/S2352-4642(19)30323-2
- Fulmer, (2018), JMIR Ment Health, 5, 10.2196/mental.9782
- Stephens, (2019), Transl Behav Med, 9, pp. 440, 10.1093/tbm/ibz043
- Fang, (2023), Front Pediatr, 10, 10.3389/fped.2022.1057863
- Hernandez, (2023), Pediatr Blood Cancer, 70, 10.1002/pbc.30164
- Shah, (2023), JAMA, 330, pp. 866, 10.1001/jama.2023.14217
- Fleming, (2023)
- Elrod, (2021), Front Pediatr, 8, 10.3389/fped.2020.613736
- Meltzer, (2021), Sleep Med Rev, 57, 10.1016/j.smrv.2021.101425
- Kapoor, (2021), J Clin Sleep Med, 17, pp. 639, 10.5664/jcsm.8984
- Voci, (2021), J Clin Med, 10, pp. 3575, 10.3390/jcm10163575
- Goldstein, (2020), J Clin Sleep Med, 16, pp. 605, 10.5664/jcsm.8288
- Hennocq, (2023), Am J Med Genet Part A, 191, pp. 1210, 10.1002/ajmg.a.63126