Audience Participation in TikTok Metadata

  1. Amparo Huertas-Bailén 1
  2. Natalia Quintas-Froufe 2
  3. Ana González-Neira 2
  1. 1 Universitat Autònoma de Barcelona
    info

    Universitat Autònoma de Barcelona

    Barcelona, España

    ROR https://ror.org/052g8jq94

  2. 2 Universidade da Coruña
    info

    Universidade da Coruña

    La Coruña, España

    ROR https://ror.org/01qckj285

Journal:
Comunicar: Revista Científica de Comunicación y Educación

ISSN: 1134-3478

Year of publication: 2024

Issue Title: Empowered and hyper(dis)connected audiences: Actors, contexts, experiences and educommunicative practices

Issue: 78

Pages: 82-92

Type: Article

DOI: 10.58262/V32I78.7 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Comunicar: Revista Científica de Comunicación y Educación

Abstract

With the expansion of digital culture, an in-depth ref lection on how to research audiences is necessary. If, formerly, the individual was placed in a social category that defined cultural tastes, now technology identifies patterns of behavior from the direct record of their actions. This text explores the type of knowledge that can be obtained on audience participation on TikTok. We propose a methodology that consists of the analysis of usage metadata. The fieldwork focuses on “Ac2ality”, an information account with 4.4 million followers in Spain. We analysed all videos shared over six weeks of the first quarter of 2023 (n=173). The purpose was to find (a) the degree of the linear correlation between the metadata for the same video and (b) the existence of correlations between metadata and type of video/content. For each metadatum available with open access (comments, likes, saves, shares and views), four activity levels have been established (low, intermediate, high and very high). The majority trend indicates that the levels obtained by the metadata of the same content are not coincident, that is, a video will have more or less scope according to the observed metadata. The homogeneity of the videos means that only clear correlations between topic and metadata are detected. Topics with less presence can reach high levels of activity.

Bibliographic References

  • Abidin, C. (2021). Mapping internet celebrity on TikTok: Exploring attention economies and visibility labours. Cultural Science Journal, 12(1), 77-103. https://doi.org/10.5334/csci.140
  • Andersen, J. (2020). Understanding and Interpreting Algorithms: Toward a Hermeneutics of Algorithms. Media, Culture & Society, 42(7- 8), 1479-1494. https://doi.org/10.1177/0163443720919373
  • Bucher, T. (2017). The Algorithmic Imaginary: Exploring the Ordinary Affects of Facebook Algorithms. Information, Communication & Society, 20(1), 30 - 44. https://doi.org/10.1080/1369118X.2016.1154086
  • Comscore. (2023, March 15). Comscore Insights: nuevos tiempos, nuevos consumos, perspectiva 2023. https://bit.ly/43wDsuZ
  • Dourish, P. (2016). Algorithms and Their Others: Algorithmic Culture in Context. Big Data & Society, 3( 2 ) , 1 – 11. https://doi.org/10.1177/2053951716665128
  • Estrada-García, S., & Gamir-Ríos, J. (2023). Soft News in Original Videos. Adaptation to Tiktok of the Main Spanish Online Media. Profesional De La Información, 32(2), 320222. https://doi.org/10.3145/epi.2023.mar.22
  • Fernández Rodríguez, C. J., & Heikkilä, R. (2011). El Debate Sobre El Omnivorismo Cultural. Una Aproximación a Nuevas Tendencias en Sociología Del Consumo. Revista Internacional De Sociología, 69(3), 585-606. https://doi.org/10.3989/ris.2010.04.15
  • Fisher, E. (2015). ‘You Media’: Audiencing as Marketing in Social Media. Media, Culture & Society, 37(1), 50 - 67. https://doi.org/10.1177/0163443714549088
  • Fisher, E., & Mehozay, Y. (2019). How Algorithms See Their Audience: Media Epistemes and the Changing Conception of the Individual. Media, Culture & Society, 41( 8 ) , 1176 -1191. https://doi.org/10.1177/0163443719831598
  • Flyverbom, M., & Murray, J. (2018). Datastructuring—organizing and Curating Digital Traces Into Action. Big Data & Society, 5(2), 1–12. https://doi.org/10.1177/205395171879 9114
  • Fulgoni, G. M., & Lipsman, A. (2017). Measuring Television in the Programmatic Age: Why Television Measurement Methods Are Shifting Toward Digital. Journal of Advertising Research, 57(1), 10 -14. https://doi.org/10.2501/JAR-2017-009
  • García-Marín, D., & Salvat-Martinrey, G. (2022). Viralizar la verdad. Factores predictivos del engagement en el contenido verificado en TikTok. Profesional De La Información, 31(2), 310210. https://doi.org/10.3145/epi.2022.mar.10
  • García-Marín, J., & Serrano-Contreras, I.-J. (2023). (Un) Founded Fear Towards the Algorithm: Youtube Recommendations and Polarisation. C o mu n ic a r, 31(74), 61-70. https://doi.org/10.3916/C74-2023-05
  • García-Orosa, B., Canavilhas, J., & Vázquez-Herrero, J. (2023). Algorithms and Communication: a Systematized Literature Review. C o mu n ic a r, 31(74), 9-21. https://doi.org/10.3916/C74-2023-01
  • Hallinan, B., & Striphas, T. (2016). Recommended for You: the Netf lix Prize and the Production of Algorithmic Culture. New Media & Society, 18(1) , 117-1 3 7. https://doi.org/10.1177/1461444814538646
  • Hartley, J. (2000). Los Usos De La Televisión. Paidós. https://go.revistacomunicar.com/vccDVk
  • Huertas, A. (2002). La Audiencia Investigada. Gedisa. https://go.revistacomunicar.com/2IeYgE
  • Huertas, A. (2015). Yo Soy Audiencia. Ciudadanía, Público Y Mercado. UOC Press. https://go.revistacomunicar.com/dJwgaX
  • IAB. (2023, May 10). Estudio De Redes Sociales. IAB Spain. https://go.revistacomunicar.com/lLOSmV
  • Jensen, K. B. (2019). The Double Hermeneutics of Audience Research. Television & New Media, 20(2), 142-154. https://doi.org/10.1177/1527476418811103
  • Jones, C. (2023). How to train your algorithm: the struggle for public control over private audience commodities on Tiktok. Media, Culture & Society, 45(6). https://doi.org/10.1177/01634437231159555
  • Lawlor, B. (2020). Questioning the legitimacy of data. Information Services & Use, 40(3), 259-272. https://doi.org/10.3233/ISU-200098
  • Livingstone, S. (2019). Audiences in an Age of Datafication: Critical Questions for Media Research. Television & New Media, 20(2), 170 -183. https://doi.org/10.1177/1527476418811118
  • Lomborg, S., & Kapsch, P. H. (2020). Decoding Algorithms. Media, Culture & Society, 42(5), 745-761. https://doi.org/10.1177/0163443719855301
  • Lovink, G. (2019). Tristes Por Diseño: Las Redes Sociales Como Ideología. Consonni. https://doi.org/https://doi.org/10.7203/rd.v1i7.208
  • Martínez-Estrella, E.-C., Samacá-Salamanca, E., García-Rivero, A., & Cifuentes-Ambra, C. (2023). Generation Z in Chile, Colombia, México, and Panama: Interests and new digital consumption habits. Their use of Instagram and TikTok. Profesional De La Información, 32(2), 1-15. https://doi.org/10.3145/epi.2023.mar.18
  • Martínez, J. (2023, May 5). Atresmedia Entra en El Canal De Tiktok Ac2uality a Cambio De Un Pacto Comercial. La Información. https://go.revistacomunicar.com/M6CABa
  • Méndez Rodríguez, E. M. (2003). La descripción de documentos electrónicos a través de metadatos: una visión para la Archivística desde la nueva e-Administración. Revista d’Arxius, 2003, 47- 82. https://go.revistacomunicar.com/dOUT60
  • Newman, N. (2022). How Publishers Are Learning to Create and Distribute News on TikTok (1914566041). Reuters Institute for the Study of Journalism. https://bit.ly/3OJ2RO0
  • Noble, S. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press. https://doi.org/10.2307/j.ctt1pwt9w5
  • Pasquale, F. (2015). The Black Box Society: the Secret Algorithms That Control Money and Information. Harvard University Press. https://doi.org/10.4159/harvard.9780674736061.c8
  • Pérez-Escolar, M., Alcaide-Pulido, P., & Del Toro, A. (2023). Nuevos referentes informativos de la generación Z: Estudio del rol de los y las inf luencers en TikTok como divulgadores/as de contenidos. Prisma Social: Revista De Investigación Social, (40), 262-288. https://go.revistacomunicar.com/RWmfH4
  • Reder, M. (2012). Globalización Y Filosofía. Herder. https://doi.org/10.2307/j.ctvt9k0dr
  • Riemer, K., & Peter, S. (2021). Algorithmic Audiencing: Why We Need to Rethink Free Speech on Social Media. Journal of Information Technology, 36(4), 409-426. https://doi.org/10.1177/02683962211013358
  • Rif kin, J. (2000). La Era Del Acceso. La Revolución De La Nueva Economía. Paidós. https://go.revistacomunicar.com/7Ahqlz
  • Thomas, S. L., Nafus, D., & Sherman, J. (2018). Algorithms as Fetish: Faith and Possibility in Algorithmic Work. Big Data & Society, 5(1) , 1-11. https://doi.org/10.1177/2053951717751552
  • TikTok. (2022, Nov 17). An update on our platform API for researchers. https://bit.ly/3IGWBlO
  • Vázquez-Herrero, J., Negreira-Rey, M.-C., & Rodríguez-Vázquez, A.-I. (2021). Intersections Between Tiktok and Tv: Channels and Programmes Thinking Outside the Box. Journalism and Media, 2(1), 1-13. https://doi.org/10.3390/journalmedia2010001
  • Warner, M. (2012). Público, Públicos, Contrapúblicos. Fondo De Cultura Económica (FCE). https://go.revistacomunicar.com/YdSkEh
  • Webster, J. G. (2016). Why Study Measures of Exposure? From Exposure to Attention. Communication Methods and Measures, 10(2-3), 179-180. https://doi.org/10.1080/19312458.2016.1150974
  • Wolton, D. (1999). Sobre La Comunicación. Acento Editorial. https://go.revistacomunicar.com/b94hh5