An index for moving objects with constant-time access to their compressed trajectories

  1. Nieves Rodríguez Brisaboa 1
  2. Travis Gagie
  3. Adrián Gómez Brandón 1
  4. Gonzalo Navarro 2
  5. José R. Paramá 1
  1. 1 Universidade da Coruña
    info

    Universidade da Coruña

    La Coruña, España

    ROR https://ror.org/01qckj285

  2. 2 Universidad de Chile
    info

    Universidad de Chile

    Santiago de Chile, Chile

    ROR https://ror.org/047gc3g35

Libro:
Actas de las XXV Jornadas de Ingeniería del Software y Bases de Datos (JISBD 2021): [Málaga, 22 al 24 de septiembre de 2021]
  1. Rafael Capilla (coord.)
  2. Maider Azanza (coord.)
  3. Miguel Rodríguez Luaces (coord.)
  4. María del Mar Roldán García (coord.)
  5. Loli Burgueño (coord.)
  6. José Raúl Romero (coord.)
  7. José Antonio Parejo Maestre (coord.)
  8. José Francisco Chicano García (coord.)
  9. Marcela Genero (coord.)
  10. Oscar Díaz (coord.)
  11. José González Enríquez (coord.)
  12. Mª Carmen Penadés Gramaje (coord.)
  13. Silvia Abrahão (col.)

Editorial: Sociedad de Ingeniería de Software y Tecnologías de Desarrollo de Software (SISTEDES)

Año de publicación: 2021

Congreso: Jornadas de Ingeniería del Software y Bases de Datos (JISBD) (25. 2021. Malaga)

Tipo: Aportación congreso

Resumen

As the number of vehicles and devices equipped with GPS technology has grown explosively, an urgent need has arisen for time- and space-efficient data structures to represent their trajectories. The most commonly desired queries are the following: queries about an object's trajectory, range queries and nearest neighbor queries. In this paper we consider that the objects can move freely and we present a new compressed data structure for storing their trajectories, based on a combination of logs and snapshots, with the logs storing sequences of the objects' relative movements and the snapshots storing their absolute positions sampled at regular time intervals. We call our data structure ContaCT because it provides Constant-time access to Compressed Trajectories. Its logs are based on a compact partial-sums data structure that returns cumulative displacement in constant time, and allows us to compute in constant time any object's position at any instant, enabling a speedup when processing several other queries. We have compared ContaCT experimentally with another compact data structure for trajectories, called GraCT, and with a classic spatio-temporal index, the MVR-tree. Our results show that ContaCT outperforms the MVR-tree by orders of magnitude in space and also outperforms the compressed representation in time performance.