Actividad antifúngica de extractos crudos de Bacillus subtilis contra fitopatógenos de soja (Glycine max) y efecto de su coinoculación con Bradyrhizobium japonicum

  1. Gabriela C. Sarti
  2. Silvia S. Miyazaki
Journal:
Agrociencia

ISSN: 1405-3195 2521-9766

Year of publication: 2013

Volume: 47

Issue: 4

Pages: 373-383

Type: Article

More publications in: Agrociencia

Abstract

Fungal species Fusarium solani and Pythium sp. are among the microorganisms causing diseases in pre and post harvest crop soybean (Glycine max). Four strains of the genus Bacillus (B. subtilis ATCC6633, B. amylolyticus, B. subtilis var. natto, B. subtilis var. natto domesticated) were tested to evaluate the inhibitory response of them on the phytopathogenic fungi previously mentioned. The inoculation treatments were 1) seeds inoculated with Bradyrhizobium japonicum, and 2) seeds coinoculated with B. japonicum and B. subtilis. Plants were grown in a thermostated culture chamber at 30±1 °C, 60 % relative humidity and 16/8 light-dark photoperiod for 35 d. Data were analyzed by ANOVA and means were compared by applying the Tukey test (p≤0.05). The in vitro assays of the strain B. subtilis ATCC6633 reduced the mycelial growth of Fusarium solani (50 %) and Pythium sp. (47 %) compared to controls. The coinoculation of B. japonicum and B. subtilis stimulated the growth of the whole plant by 125 %, 100 % aerial part, 235 % root, 20 % number of leaves, and 88 % nodule number compared to control. The strain B. subtilis ATCC6633 synthesized metabolites of proteinaceous nature and others with biosurfactant capacity. When the bacteria were grown in minimal saline medium, glycerol 1 % and concentrations of L-glutamic acid between 40 and 55 mM, the highest concentration of proteinaceous metabolites (35 µg protein mL-1) was obtained and increased biofilm formation. Biofilm formation, the presence of biosurfactants and the release of antifungal metabolites positioned this bacterium in a situation competitively advantageous compared to the rest of the microbiota of the rhizosphere in the soybean plant.

Bibliographic References

  • Araújo, F. F., Henning, A. A., Hungría, M.. (2005). Phytohor-mones and antibiotics produced by Bacillus subtilis and their affects on seed pathogenic fungi and on soybean root development 2005.. World J. Microbiol. Biotechnol.. 21. 1639-1645
  • Bai, Y., Zhou, X., Smith, D. L.. (2003). Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci.. 43. 1774-1781
  • Bradford, M. (1976). A rapid and sensitive method for quanti-tation of microorganism quantities of protein utilizing the principle of protein dye-binding. Analytical Biochem.. 72. 248-254
  • Compant, S., Brion, D., Nowak, J., Clément, C., Barka, E. A.. (2005). Use of plant growth-promoting bacteria for biocontrol of plant disease: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol.. 71. 4951-4959
  • Correa, O. S., Montecchia, M. S., Berti, M. F., Fernández Ferrari, M. C., Pucheu, N. L., Kerber, N. L., García, A. F.. (2009). Bacillus amyloliquefaciens BN M122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Appl. Soil Ecol.. 41. 185-194
  • Ghasemi, S., Almadian, G., Jelodar, N., Rahimian, H., Ghandi-li, S., Dehestani, A., Shariati, P.. (2010). Antifungal chitinases from Bacillus pumilus SG2: preliminary report. World J. Mi-crobiol. Biotechnol.. 26. 1437-1443
  • Gordillo, M., Navarro, A., Benitez, L., Torres, M., Maldonado, M.. (2009). Preliminary study and improve the production of metabolites with antifungal activity by a Bacillus sp strain IBA 33. Microbiol. Insight.. 2. 15-24
  • Kavita, S., Senthilkumar, S., Gnanamanickam, S., Inayathu-llah, M., Jayakumar, R.. (2005). Isolation and partial characterization of antifungal protein from Bacillus polymyxa strain VLB16. Process Biochem.. 40. 3236-3243
  • Leclére, V., Bechet, M., Adam, A., Guez, J.S., Wathelet, B., On-gena, M., Thonart, P., Gancel, F., Chollet-Imbert, M.. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism's antagonistic and biocontrol activities. Appl. Environ. Microbiol.. 71. 4577-4584
  • Molla, A. H., Shamsuddin, Z. H., Halimi, M. S., Morziah, M., Puteh, A. B.. (2001). Potential for enhancement of root growth and nodulation of soybean coinoculated with Azospi-rillum and Bradyrhizobium in laboratory systems. Soil Biol. Biochem.. 33. 457-463
  • Monds, R. D., O'Toole, G. A.. (2009). The developmental model of microbial biofilms: ten years of a paradigm up fori review. Trends Microbiol.. 17. 73-87
  • Morikawa, M., Kagihiro, S., Haruki, M., Takano, K., Branda, S., Kolter, R., Kanaya, S.. (2006). Biofilm formation by a Bacillus subtilis strain that produces α-polyglutamate. Microbiology. 152. 2801-2807
  • Nakano, M. M., Marahiel, M. A., Zuber, P.. (1988). Identification of a genetic locus required for biosynthesis of the lipo-peptide antibiotic surfactin in Bacillus subtilis. J. Bacteriol.. 170. 5662-5668
  • Ongena, M., Jaques, P., Toure, Y., Destain, J., Jabrane, A., Thonart, P.. (2005). Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Microbiol. Biotechnol.. 69. 29-38
  • O'Toole, G. A., Kolter, R.. (1998). Initiantion of biofilm formation in Pseudomonas fluorescens WCS 365 proceeds via multiple convergent signalling pathways: a genetic analysis. Mol. Microbiol.. 28. 449-461
  • Rahman, M. S., Ano, T., Shoda, M.. (2007). Biofilm fermentation of iturin A by a recombinant strain of Bacillus subtilis 168. J. Biotechnol.. 127. 503-507
  • Rahman, M. S., Ano, T.. (2009). Production characteristics of lipopeptide antibiotics in biofilm fermentation of Bacilllus subtilis. J. Environ. Sci.. 21. S36-S39
  • Rudrappa, T., Biedrzycki, M. L., Bais, H. P.. (2008). Causes and consequences of plant-associated biofilms. FEMS Mi-crobiol. Ecol.. 64. 153-166
  • Sansinenea, E., Ortiz, A.. (2011). Secondary metabolites of soil Bacillus spp. Biotechnol. Lett.. 33. 1523-1538
  • Satorre, E. (2003). El Libro de la Soja. SEMA. Buenos Aires. 264
  • Siddiqui, Z. A. (2006). PGPR: Biocontrol and Biofertilization. Springer. 313
  • Somasegaran, P., Hoben, H.. (1985). Methods in Legume-Rhizobium Technology. University of Hawaii. 273
  • Sosa López, A., Pozos, V., Torres, D.. (2005). Aislamiento y selección de bacterias pertenecientes al género Bacillus con potencialidades para el control biológico en semilleros de tabaco. Centro Agrícola. La Habana.
  • Stanley, N., Lazazerra, B.. (2005). Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect polyglutamic acid production and biofilm formation. Mol. Microbiol.. 57. 1143-1158
  • Sun, L., Lu, Z., Bie, X., Lu, F., Yang, S.. (2006). Isolation and characterization of a coproducer of fengycins and surfactins endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi 2006.. World J. Microbiol. Biotechnol.. 22. 1259-1266
  • Villela, F., Senesi, S., Dulce, E., Pérez San Martín, R., Darzia-no, M.. (2009). El Sistema de Agronegocios de la Soja en la Argentina, su Cadena y Prospectiva al 2020. Editorial Horizonte. Buenos Aires. 340
  • Wang, J., Liu, J., Chen, H., Yao, J.. (2007). Characterization of Fusarium graminearum inhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol.. 76. 889-894