Assessment of soil redistribution at catchment scale by coupling a soil erosion model and a sediment connectivity index (Central Spanish Pre-Pyrenees)

  1. López-Vicente, M. 1
  2. L. Quijano 1
  3. L. Palazón 1
  4. Gaspar, L. 2
  5. Ana Navas Izquierdo 1
  1. 1 Estación Experimental de Aula Dei
    info

    Estación Experimental de Aula Dei

    Zaragoza, España

    ROR https://ror.org/056a37x91

  2. 2 University of Northern British Columbia
    info

    University of Northern British Columbia

    Prince George, Canadá

    ROR https://ror.org/025wzwv46

Revista:
Cuadernos de investigación geográfica: Geographical Research Letters
  1. Nadal Romero, María Estela (coord.)

ISSN: 0211-6820 1697-9540

Año de publicación: 2015

Volumen: 41

Número: 1

Páginas: 127-147

Tipo: Artículo

DOI: 10.18172/CIG.2649 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos de investigación geográfica: Geographical Research Letters

Objetivos de desarrollo sostenible

Resumen

El estudio y cuantificación de la redistribución del suelo es una tarea compleja y difícil y un asunto no resuelto a escala de cuenca, tanto en estudios de campo como mediante simulación numérica. En este trabajo abordamos este tema de investigación mediante la aplicación conjunta de dos modelos de predicción y una robusta base de datos de campo para la estimación de la redistribución potencial del suelo en una cuenca agrícola montañosa de secano de ambiente mediterráneo (cuenca del Barranco de La Reina, comarca de las Cinco Villas, NE de España): la versión “Modified-RMMF-2014” mejorada del modelo de erosión del suelo “Modified Revised Morgan, Morgan and Finney” (Morgan, 2001; López-Vicente y Navas, 2010) y el modelo IC (Index of Connectivity; Borselli et al., 2008) de conectividad del sedimento. En una parcela de cereal experimental (1.9 ha; resolución 1 x 1 m de tamaño de celda), situada en la parte baja de la cuenca del Barranco de La Reina, aplicamos el modelo IC bajo seis escenarios de escorrentía y los resultados se analizaron frente a las observaciones de campo de redistribución del suelo. La mejor simulación se obtuvo tras añadir el mapa de elementos geomorfológicos (regueros, cárcavas efímeras y abanicos de acumulación) al modelo IC. Ambos modelos se correlacionaron en 613 puntos de control y se identificaron tres áreas: pérdida neta de suelo, estable y acumulación, en el 30%, 22% y 48% de la superficie de la parcela, respectivamente. Las tasas promedio de erosión en cada área fueron de 3.3, 1.5 y 1.1 Mg ha-1 año-1 con desviaciones típicas de 20.3, 19.0 y 8.3 Mg ha-1 año-1. Posteriormente, el modelo IC se aplicó en la cuenca del Barranco de La Reina (231 ha; resolución 5 x 5 m) y los valores se interpretaron en función de los resultados previos en la parcela, identificando las zonas potenciales de pérdida neta, estables y de acumulación. El modelo IC permitió identificar áreas claramente diferentes dentro de la cuenca, aunque la superficie afectada por procesos de pérdida neta se infra estimó, afectando sólo al 11% de la superficie total. Investigaciones futuras deben abordar la mejora del modelo IC a escala de cuenca. Nuestra propuesta se presenta como una alternativa sencilla para la estimación potencial de la redistribución espacial del suelo a escala de cuenca, que resulta de interés en cuencas no monitorizadas en las que la calibración de modelos numéricos resulta difícil.

Referencias bibliográficas

  • Antoine, M., Javaux, M., Bielders, C. 2009. What indicators can capture runoff-relevant connectivity properties of the micro-topography at the plot scale? Advances in Water Resources 32(8), 1297-1310.
  • Bamutaze, Y., Shrestha, D. 2005. A comparative assessment of soil erosion using the Revised Morgan Morgan and Finney and the Revised Universal Soil Loss models in Phetchabun, Thailand. Sixth International Conference on Geomorphology, Session S7: Soil Erosion and Desertification. Zaragoza, Spain.
  • Beguería, S. 2005. Erosión y fuentes de sedimento en la cuenca del embalse de Yesa (Pirineo Occidental): Ensayo de una metodología basada en teledetección y análisis SIG. Instituto Pirenaico de Ecología, 158 pp., Zaragoza, Spain.
  • Borselli, L., Cassi, P., Torri, D. 2008. Prolegomena to sediment and flow connectivity in the landscape: A GIS and field numerical assessment. Catena 75(3), 268-277.
  • Cavalli, M., Trevisani, S., Comiti, F., Marchi, L. 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188, 31-41.
  • Cerdà, A., Brazier, R., Nearing, M., de Vente, J. 2013. Scales and erosion. Catena 102, 1-2.
  • Committee of the European Commission. 2012. Environment: Commission calls for a stronger response to soil degradation (Press release). Brussels, 13.2.2012, IP/12/128.
  • Coutinho, M.A., Tomás, P.P. 1995. Characterization of raindrop size distributions at the Vale Formoso Experimental Erosion Center. Catena 25(1-4), 187-197.
  • De Baets, S., Poesen, J., Meersmans, J., Serlet, L. 2011. Cover crops and their erosion-reducing effects during concentrated flow erosion. Catena 85(3), 237-244.
  • D'Haen, K., Dusar, B., Verstraeten, G., Degryse, P., De Brue, H. 2013. A sediment fingerprinting approach to understand the geomorphic coupling in an eastern Mediterranean mountainous river catchment. Geomorphology 197, 64-75.
  • Fernández, C., Vega, J.A., Vieira, D.C.S. 2010. Assessing soil erosion after fire and rehabilitation treatments in NW Spain: Performance of rusle and revised Morgan-Morgan-Finney models. Land Degradation & Development 21(1), 58-67.
  • García-Ruiz, J.M. 2010. The effects of land uses on soil erosion in Spain: A review. Catena 81(1), 1-11.
  • Gaspar, L., Navas, A., Machín, J., Walling, D.E. 2013a. Using 210Pbex measurements to quantify soil redistribution along two complex toposequences in Mediterranean agroecosystems, northern Spain. Soil & Tillage Research 130, 81-90.
  • Gaspar, L., Navas, A., Walling, D.E., Machín, J., Gómez Arozamena, J. 2013b. Using 137Cs and 210Pbex to assess soil redistribution on slopes at different temporal scales. Catena 102, 46-54.
  • Gómez, J.A., Vanwalleghem, T., De Hoces, A., Taguas, E.V. 2014. Hydrological and erosive response of a small catchment under olive cultivation in a vertic soil during a five-year period: Implications for sustainability. Agriculture, Ecosystems and Environment 188, 229-244.
  • Gonzalez-Hidalgo, J.C., Batalla, R.J., Cerdá, A., de Luis, M. 2010. Contribution of the largest events to suspended sediment transport across the USA. Land Degradation & Development 21(2), 83-91.
  • Heckmann, T., Schwanghart, W. 2013. Geomorphic coupling and sediment connectivity in an alpine catchment - Exploring sediment cascades using graph theory. Geomorphology 182, 89-103.
  • Lexartza-Artza, I., Wainwright, J. 2009. Hydrological connectivity: Linking concepts with practical implications. Catena 79(2), 146-152.
  • López-Vicente, M., Navas, A. 2010a. Relating soil erosion and sediment yield to geomorphic features and erosion processes at the catchment scale in the Spanish Pre-Pyrenees. Environmental Earth Sciences 61(1), 143-158.
  • López-Vicente, M., Navas, A. 2010b. Routing runoff and soil particles in a distributed model with GIS: implications for soil protection in mountain agricultural landscapes. Land Degradation & Development 21(2), 100-109.
  • López-Vicente, M., Navas, A., Gaspar, L., Machín, J. 2013d. Advanced modelling of runoff and soil redistribution for agricultural systems: the SERT model. Agricultural Water Management 125, 1-12.
  • López-Vicente, M., Navas, A., Machín, J. 2008a. Identifying erosive periods by using RUSLE factors in mountain fields of the Central Spanish Pyrenees. Hydrology and Earth System Sciences 12(2), 523-535.
  • López-Vicente, M., Navas, A., Machín, J. 2008b. Modelling soil detachment rates in rainfed agrosystems in the south-central Pyrenees. Agricultural Water Management 95(9), 1079-1089.
  • López-Vicente, M., Navas, A., Machín, J., Gaspar, L. 2011. Spatial scale dependency of runoff and sediment connectivity in small sub-catchments in the Spanish Pyrenees. Geophysical Research Abstracts 13, EGU2011-10870-2.
  • López-Vicente, M., Pérez-Bielsa, C., López-Montero, T., Lambán, L.J., Navas, A. 2014a. Runoff simulation with eight different flow accumulation algorithms: Recommendations using a spatially distributed and open-source model. Environmental Modelling & Software 62, 11-21.
  • López-Vicente, M., Poesen, J., Navas, A., Gaspar, L. 2013a. Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena 102, 62-73.
  • López-Vicente, M., Quijano, L., Gaspar, L., Palazón, L., Navas, A. 2014b. Severe soil erosion during a three-day exceptional rainfall event: combining modelling and field data for a fallow cereal field. Hydrological Processes DOI: 10.1002/hyp.10370.
  • López-Vicente, M., Quijano, L., Palazón, L., Gaspar, L., Machín, J., Navas, A. 2013c. Erosión hídrica y conectividad en un Calcisol cultivado: variaciones espacio temporales de la pérdida y acumulación de suelo. Control de la Degradación y Restauración de Suelos (VI Simposio CDRS). Editor: Universidad de Almería (JA Sánchez Garrido, V González Andrés, F del Moral Torres): 63–66. ISBN: 978‐84‐15487‐52‐4.
  • López-Vicente, M., Quijano, L., Gaspar, L., Machín, J., Navas, A. 2012. Spatial and temporal heterogeneity of water soil erosion in a Mediterranean rain-fed crop. Geophysical Research Abstracts 14, EGU2012-9435.
  • López-Vicente, M., Quijano, L., Palazón, L., Machín, J., Gaspar, L., Navas, A. 2013b. Joint application of the ModRMMF and IC models of soil erosion and sediment connectivity: improvement of modelling predictions. Geophysical Research Abstracts 15, EGU2013-2068.
  • Meerkerk, A.L., van Wesemael, B., Bellin, N. 2009. Application of connectivity theory to model the impact of terrace failure on runoff in semi-arid catchments. Hydrological Processes 23(19), 2792-2803.
  • Morgan, R.P.C. 2001. A simple approach to soil loss prediction: a revised Morgan–Morgan–Finney model. Catena 44(4), 305-322.
  • Morgan, R.P.C., Duzant, J.H. 2008. Modified MMF (Morgan-Morgan-Finney) model for evaluating effects of crops and vegetation cover on soil erosion. Earth Surface Processes and Landforms 33(1), 90-106.
  • Navas, A., López-Vicente, M., Gaspar, L., Machín, J. 2013. Assessing soil redistribution in a complex karst catchment using fallout 137Cs and GIS. Geomorphology 196, 231-241.
  • Navas, A., López-Vicente, M., Gaspar, L., Palazón, L., Quijano, L. 2014. Establishing a tracer based sediment budget to preserve wetlands in Mediterranean mountain agroecosystems (NE Spain). Science of the Total Environment 496, 132-143.
  • Navas, A., Valero-Garcés, B., Gaspar, L., Machín, J. 2009. Reconstructing the history of sediment accumulation in the Yesa reservoir: An approach for management of mountain reservoirs. Lake and Reservoir Management 25(1), 15-27.
  • Navas, A., Walling, D.E. 1992. Using caesium-137 to assess sediment movement on slopes in a semiarid upland environment in Spain. In: Erosion, debris flows and environment in mountain regions. Proc. international symposium, Chengdu, China, pp. 129-138.
  • Notebaert, B., Verstraeten, G., Ward, P., Renssen, H., Van Rompaey, A. 2011. Modeling the sensitivity of sediment and water runoff dynamics to Holocene climate and land use changes at the catchment scale. Geomorphology 126(1-2), 18-31.
  • Pimentel, D., Skidmore, E.L., Trimble, S.W. 1999. Rates of soil erosion (multiple letters). Science 286(5444), 1477-1478.
  • Quijano, L., Chaparro, M.A.E., Marié, D.C., Gaspar, L., Navas, A. 2014. Relevant magnetic and soil parameters as potential indicators of soil conservation status of Mediterranean agroecosystems. Geophysical Journal International 198, 1805-1817.
  • Quijano, L., Gaspar, L., López-Vicente, M., Machín, J., Navas, A. 2012. Indicadores de la calidad del suelo en Calcisoles mediterráneos. In: Book of abstracts of the “V Congreso Ibérico de Ciencias del Suelo” (Ed. Jorge Pinheiro), September 2012, Azores, Portugal, pp. 125.
  • Quijano, L., López-Vicente, M., Gaspar, L., Machín, J., Navas, A. 2013. Modelling soil redistribution in a hydrologically defined crop field with WATEM/SEDEM. Geophysical Research Abstracts 15, EGU2013-5413.
  • Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). Handbook #703. US Department of Agriculture, Washington, DC.
  • Scholz, G., Quinton, J.N., Strauss, P. 2008. Soil erosion from sugar beet in Central Europe in response to climate change induced seasonal precipitation variations. Catena 72(1), 91-105.
  • Sheridan, G.J., Jones, O.D., Lane, P.N.J. 2009. Stochastic rainfall-runoff equations for quantifying runoff and pollutant connectivity between hillslopes and streams. Geophysical Research Abstracts 11, EGU2009–3845.
  • Singh, K.S., Kumar, B., Khare, D., Jain, S.K. 2007. Estimation of erosion rate in a small catchment of Loktak wetland, India, using lead-210 (210Pb) technique. International Journal of Water 3(3), 257-265.
  • Smets, T., López-Vicente, M., Poesen, J. 2011. Impact of subsurface rock fragments on runoff and interrill soil loss from cultivated soils. Earth Surface Processes and Landforms 36(14), 1929-1937.
  • Smith, H.G., Blake, W.H., Taylor, A. 2014. Modelling particle residence times in agricultural river basins using a sediment budget model and fallout radionuclide tracers. Earth Surface Processes and Landforms, DOI: 10.1002/esp.3589.
  • Soto, J., Navas, A. 2008. A simple model of Cs-137 profile to estimate soil redistribution in cultivated stony soils. Radiation Measurements 43(7), 1285-1293.
  • Sougnez, N., van Wesemael, B., Vanacker, V. 2011. Low erosion rates measured for steep, sparsely vegetated catchments in southeast Spain. Catena 84(1-2), 1-11.
  • Stavi, I., Lal, R. 2011. Variability of soil physical quality in uneroded, eroded, and depositional cropland sites. Geomorphology 125(1), 85-91.
  • Verheijen, F.G.A., Jones, R.J.A., Rickson, R.J., Smith, C.J. 2009. Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews 94(1-4), 23-38.
  • Vieira, D.C.S., Prats, S.A., Nunes, J.P., Shakesby, R.A., Coelho, C.O.A., Keizer, J.J. 2014. Modelling runoff and erosion, and their mitigation, in burned Portuguese forest using the revised Morgan-Morgan-Finney model. Forest Ecology and Management 314, 150-165.
  • Vigiak, O., Borselli, L., Newham, L.T.H., McInnes, J., Roberts, A.M. 2012. Comparison of conceptual landscape metrics to define hillslope-scale sediment delivery ratio. Geomorphology 138, 74-88.
  • Vigiak, O., Okoba, B.O., Sterk, G., Groenenberg, S. 2005. Modelling catchment-scale erosion patterns in the East African Highlands. Earth Surface Processes and Landforms 30, 183-196.
  • Vigiak, O., Sterk, G., Romanowicz, R.J., Beven, K.J. 2006. A semi-empirical model to assess uncertainty of spatial patterns of erosion. Catena 66, 198-210.