Método para la dirección de obra de viviendas modulares pasivas

  1. Meire Montaña, Carolina 1
  2. Linhares, Patricia 2
  3. Hermo Sánchez, Víctor 2
  1. 1 Ingeniero de Edificación Universidade da Coruña. ETS Arquitectura
  2. 2 Universidade da Coruña. ETS Arquitectura 15071
Revista:
Informes de la construcción

ISSN: 0020-0883

Año de publicación: 2023

Volumen: 75

Número: 572

Tipo: Artículo

DOI: 10.3989/IC.6452 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Informes de la construcción

Resumen

Este artículo presenta el diseño y comprobación de un innovador método de dirección de obra para construcciones modulares pasivas, alineado con la metodología lean construction - Last planner system. Y que, a su vez, garantice los criterios de diseño de una construcción ecoeficiente. Motivado por la complejidad que reside en la ejecución de construcciones modulares. Se define esta guía con el objetivo de potenciar la eficiencia de la puesta en obra y asegurar un alto grado de industrialización. Para ello se detallan las singularidades de las fases de ejecución, los hitos de verificación y se estudian los errores recurrentes y su subsanación. El documento concluye con la obtención de resultados significativos sobre los parámetros que garantizan la productividad de la construcción “plazo, coste, calidad y sostenibilidad”.

Referencias bibliográficas

  • Lim, Y. W., Ling, P. C., Tan, C. S., Chong, H. Y., & Thurairajah, A. (2022). Planning and coordination of modular construction. Automation in Construction, 141, 104455.
  • Roque, E., Oliveira, R., Almeida, R. M., Vicente, R., & Figueiredo, A. (2020). Lightweight and prefabricated construction as a path to energy efficient buildings: Thermal design and execution challenges. International Journal of Environment and Sustainable Development, 19(1), 1-32.
  • Badir, Y. F., Kadir, M. A., & Hashim, A. H. (2002). Industrialized building systems construction in Malaysia. Journal of architectural engineering, 8(1), 19-23.
  • Kasperzyk, C., Kim, M. K., & Brilakis, I. (2017). Automated re-prefabrication system for buildings using robotics. Automation in Construction, 83, 184-195. . (5) Röck, M., Ruschi Mendes Saade, M., Balouktsi, M., Nygaard, F., Birgisdottir, H., Frischknecht, R., Habert, G. and Lützkendorf, T. (2019). Embodied GHG emissions of buildings-The hidden challenge for e ff ective climate change mitigation. Appl. Energy, 258, 114107.
  • Agudelo, H. A., Hernández, A. V., & Cardona, D. A. R. (2012). Sostenibilidad: Actualidad y necesidad en el sector de la construcción en Colombia. Gestión y ambiente, 15(1), 105-117.
  • Waisman, H., De Coninck, H., & Rogelj, J. (2019). Key technological enablers for ambitious climate goals: Insights from the IPCC special report on global warming of 1.5 C. Environmental Research Letters, 14(11), 111001.
  • Santamouris, M., & Kolokotsa, D. (2013). Passive cooling dissipation techniques for buildings and other structures: The state of the art. Energy and Buildings, 57, 74-94. . (9) Horizon, E. C. (2020). URL: https://ec.europa.eu/programmes/horizon2020.
  • Europeo, P. (2002).Directiva 2002/91/CE del Parlamento Europeo y del Consejo de 16 de diciembre de 2002 relativa a la Eficiencia Energética de los Edificios. Oficina de Publicaciones Oficiales de las Comunidades Europeas.
  • Europeo, P. (2010). Directiva 2010/31/UE del Parlamento Europeo y del Consejo, de 19 de mayo de 2010, relativa a la eficiencia energética de los edificios.
  • Mohamed, A., Hasan, A., & Sirén, K. (2014). Fulfillment of net-zero energy building (NZEB) with four metrics in a single family house with different heating alternatives. Applied Energy, 114, 385-399.
  • Magrini, A., Lentini, G., Cuman, S., Bodrato, A., & Marenco, L. (2020). From nearly zero energy buildings (NZEB) to positive energy buildings (PEB): The next challenge-The most recent European trends with some notes on the energy analysis of a forerunner PEB example. Developments in the Built Environment, 3, 100019.
  • Uriz, A. L., Sanz, C., & Sánchez, B. (2019). Aplicación de un modelo Lean-BIM para la mejora de la productividad en redacción de proyectos de edificación. Informes de la Construcción, 71(556), e313.
  • Heigermoser, D., de Soto, B. G., Abbott, E. L. S., & Chua, D. K. H. (2019). BIM-based Last Planner System tool for improving construction project management. Automation in Construction, 104, 246-254.
  • Koskela, L. (1992).Application of the new production philosophy to construction (Vol. 72, p. 39). Stanford: Stanford university.
  • Ballard, G., & Howell, G. (1994). Implementing lean construction: stabilizing work flow. Lean construction, 2, 105-114.
  • Hamzeh, F. R., Ballard, G., & Tommelein, I. D. (2008, July). Improving construction workflow-the connective role of lookahead planning. In Proceedings for the 16th annual conference of the International Group for Lean Construction (pp. 635-646).
  • Hoyos, M. F., & Botero, L. F. (2018). Evolution and global impact of the Last Planner System: a literature review. Ingeniería y Desarrollo, 36(1), 187-214.
  • Koskela, L. (2000). An exploration towards a production theory and its application to construction. VTT Technical Research Centre of Finland.
  • V. Porwal, J. Fernández-Solís, S. Lavy, & Z. K. Rybkowski, (2010). Last planner system implementation challenges, Production Planning and Control, p. 10.
  • Fernandez-Solis, J. L., Porwal, V., Lavy, S., Shafaat, A., Rybkowski, Z. K., Son, K., & Lagoo, N. (2013). Survey of motivations, benefits, and implementation challenges of last planner system users. Journal of construction engineering and management, 139(4), 354-360.
  • Kalsaas, B. T. (2012). The Last Planner System Style of Planning: Its Basis in Learning Theory. Journal of Engineering, Project & Production Management, 2(2).
  • del Solar, P., del Rio, M., Fuente, R., & Esteban, C. (2021). Herramientas de trabajo colaborativo en el sector de la construcción español. Buenas prácticas para la implementación de la metodología “Último Planificador (LPS)”. Informes de la Construcción, 73(561), e383.
  • Pons Achell, J. F., & Rubio Pérez, I. (2019). Lean Construction y la planificación colaborativa. Metodología del Last Planner® System. Consejo General de la Arquitectura Técnica de España (CGATE).
  • Feist, W., Schnieders, J., Dorer, V., & Haas, A. (2005). Re-inventing air heating: Convenient and comfortable within the frame of the Passive House concept. Energy and buildings, 37(11), 1186-1203.
  • Gantioler, G. (2010). Manual para la certificación “Estándar Passivhaus” CERTIFICADO Estándar Passivhaus Dr. Wolfgang Feist. Versión del, 23.
  • Linhares, P., Hermo, V., & Meire, C. (2021). Environmental design guidelines for residential NZEBs with liner tray construction. Journal of Building Engineering, 42, 102580.
  • Mitchell, R., & Natarajan, S. (2020). UK Passivhaus and the energy performance gap. Energy and Buildings, 224, 110240.
  • De Wilde, P. (2014). The gap between predicted and measured energy performance of buildings: A framework for investigation. Automation in construction, 41, 40-49.
  • Hermo, V. (2011). Sistema constructivo industrializado in situ COTaCERO: transferencia tecnológica: construcción de depósitos-ejecución de viviendas en altura mediante paneles portantes de acero.
  • Valcárcel, J. P., Hermo, V. & Cheda, J. B. R. (2013). Un nuevo sistema constructivo: Aspectos estructurales del sistema COTaCERO: J. P. Valcárcel, V. Hermo, J. B. Rodriguez Cheda. En Estructuras y Arquitectura (pp. 1097-1104). Prensa CRC.
  • Rodríguez Cheda, J. B., Pérez-Valcárcel, J., & Hermo, V. (2011). Método para construir edificaciones de varias plantas mediante paneles portantes ligeros desde el nivel del terreno. Spanish Patent, 2370438.
  • Pérez-Valcárcel, J., Muñoz-Vidal, M., & Hermo, V. (2020). Construcción izada: Condicionantes estructurales del sistema REVERSTOP. Informes de la Construcción, 72(559), e355-e355.
  • Hermo, (2015). Estructura modular para la construcción de edificaciones, Spanish patent., ES 2 716 889 B2 OE PM 2015, n.d.
  • Pons Achell, J. F. (2014). Introducción a lean Construction Fundación Laboral de la Construcción (Ed.) (pp. 74). Retrieved from http://www.fundacionlaboral.org/documento/introduccion-al-lean-construction.
  • Hastak, M. (1998). Advanced automation or conventional construction process? Automation in construction, 7(4), 299-314.
  • Qi, B., Razkenari, M., Costin, A., Kibert, C., & Fu, M. (2021). A systematic review of emerging technologies in industrialized construction. Journal of building engineering, 39, 102265.
  • Begum, R. A., Satari, S. K., & Pereira, J. J. (2010). Waste generation and recycling: Comparison of conventional and industrialized building systems. American Journal of Environmental Sciences, 6(4), 383.
  • Zimina, D., Ballard, G., & Pasquire, C. (2012). Target value design: using collaboration and a lean approach to reduce construction cost. Construction management and economics, 30(5), 383-398.
  • Hernando Castro, S. M. (2013).Transferencia e integración de metodología industrial innovadora en la producción de viviendas(Doctoral dissertation, Arquitectura).
  • Fischer, M., & Drogemuller, R. (2009). Virtual design and construction. In Technology, design and process innovation in the built environment (pp. 319-344). Spon Press.
  • Moreno-Rangel, A. (2020). Passivhaus. Encyclopedia, 1(1), 20-29.
  • Hatt, T., Saelzer, G., Hempel, R., & Gerber, A. (2012). High indoor comfort and very low energy consumption through the implementation of the Passive House standard in. Revista de la Construcción, 12(22-2012).
  • Bruscato, U. M., Alvarado, R. G., Oyola, O. E., Kelly, M. T., & Damico, F. C. (2011). Diseño integrado para viviendas energéticamente eficientes en Chile: Enhebrando capacidades. Hábitat Sustentable, 2-13.
  • Yakimchuk, T., Linhares, P., & Hermo, V. (2023). Evaluation of a modular construction system in accordance with the Passivhaus standard for components. Journal of Building Engineering, 76, 107234.