Continuous and discrete adjoint state formulations of conservative and reactive solute transport in porous media

  1. Aurora-Core Samper 1
  2. Francisco Javier Samper Calvete 1
  3. Alba Mon López 1
  4. C. Yang 2
  5. F. Lentijo 3
  1. 1 Universidade da Coruña. Centro de Investigacións Científicas Avanzadas
  2. 2 Environmental Data Techniques, Inc (San Antonio, TX, EEUU)
  3. 3 ENRESA Empresa Nacional de Residuos Radiactivos, S.A. (Madrid)
Libro:
Estudios en la zona no saturada del suelo. Vol. XV, ZNS'21, A Coruña, 9-10 noviembre 2021: trabajos presentados en las XV Jornadas de Investigación en la Zona no Saturada del Suelo
  1. Francisco Javier Samper Calvete (ed. lit.)
  2. Antonio Paz González (ed. lit.)
  3. Jorge Dafonte Dafonte (ed. lit.)
  4. Eva Vidal Vázquez (ed. lit.)

Editorial: Servizo de Publicacións ; Universidade da Coruña

ISBN: 978-84-9749-821-0

Ano de publicación: 2021

Páxinas: 241-249

Congreso: Jornadas de Investigación en la Zona no Saturada del Suelo (15. 2021. A Coruña)

Tipo: Achega congreso

Resumo

The adjoint state (AS) method is commonly used for calculating local derivatives of objective functions in the solution of the inverse problem of parameter estimation and computing model sensitivities for water flow and solute transport. The AS method can be applied to: (a) The continuous version of the original problem (continuous AS method) and (b) The discretized form of the original problem (discrete AS method). The continuous AS method consists on deriving the AS equations from the partial differential equations (PDEs) of the original problem and then solving numerically the resulting PDEs of the AS. The discrete adjoint state method consists on obtaining the discretized AS equations directly from the discretized equations of the original problem. Here we present the formulation of both the continuous and discrete AS for conservative solute transport in porous media. The methods are described and the properties of both continuous and discrete AS formulations are analysed and compared. We also present the AS equations for multicomponent reactive systems with mineral dissolution/precipitation and cation exchange reactions.