Predator-prey collapses at the edge of predator distributionthe case of clupeids and common guillemots (Uria aalge) in NW Iberia

  1. Martínez-Abraín, Alejandro
  2. Santidrián Tomillo, Pilar 1
  3. Mouriño, Jorge
  4. Rodríguez-Silvar, Juan 2
  5. Bermejo, Andrés 2
  1. 1 Animal Demography and Ecology Unit, GEDA, Institut Mediterrani d’Estudis Avançats (CSIC-UIB) - The Leatherback Trust, Goldring-Gund Marine Biology Station
  2. 2 Sociedade Galega de Historia Natural, Museo de Historia Natural
Revista:
Scientia Marina

ISSN: 0214-8358

Año de publicación: 2023

Volumen: 87

Número: 1

Tipo: Artículo

DOI: 10.3989/SCIMAR.05299.053 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Scientia Marina

Objetivos de desarrollo sostenible

Resumen

Las poblaciones de aves marinas están espacialmente estructuradas y eso hace que las colonias individuales dependan mucho de factores regionales. Ese es especialmente el caso en pequeñas poblaciones ubicadas lejos de grandes colonias. Aquí analizamos retrospectivamente el colapso de una población relativamente pequeña de araos comunes (Uria aalge) reproductores, ubicada en su límite de distribución sur en Europa (NO de Iberia), sucedido hace unos 50 años (alrededor de 1962-1973). Asumimos que los araos reproductores se comportaron localmente como especialistas facultativos en el consumo de peces pelágicos pequeños debido a la existencia de una potente pesquería de clupeidos y estudiamos la asociación entre el colapso del arao y los desembarcos regionales anuales de sardina (Sardina pilchardus) y boquerón (Engraulis encrasicolus), utilizados como un proxy del tamaño total del stock. La relación general entre los conteos de araos (mayo-junio), transformados mediante el logaritmo neperiano, y los desembarcos de sardina (mayo-octubre) transformados, fue más fuerte que el ajuste de las variables no transformadas (r2 =0.52 frente a 0.27), lo que indica una relación exponencial entre las variables no transformadas. Esta relación fue algo más fuerte y lineal después del colapso, cuando solo quedaron unas pocas decenas de araos (r2 =0,60). Se detectó un fuerte cambio de régimen en los desembarcos de sardina en 1968 y también en los de boquerón en 1969. La relación entre el número de araos y los desembarcos de boquerón fue lineal y fuerte (r2 =0.72). Sin embargo, no se encontró relación entre el número de araos y los desembarcos de boquerón (abril-junio) después del colapso del arao. La fecha más probable para el colapso del arao, por lo tanto, fue el período 1968-1970, ya que las colonias de aves marinas colapsan inmediatamente después de que sus presas principales hayan colapsado. Las colonias locales de araos no fueron rescatadas posteriormente por inmigración y han permanecido vacías o casi vacías hasta el presente, lo que demuestra la alta sensibilidad a la variabilidad ambiental a escala regional de las poblaciones ubicadas en el límite de la distribución de la especie.

Referencias bibliográficas

  • Anderson H.B., Evans P.G.H., Potts J.M., et al. 2013. The diet of common guillemot (Uria aalge) chicks at colonies in the UK, 2006-2011: evidence for changing prey communities in the North Sea. Ibis 156: 23-34. https://doi.org/10.1111/ibi.12099
  • Anker-Nilssen T., Barrett R.T. 1991. Status of seabirds in northern Norway. British Birds 84: 329-341.
  • Bárcena F. 1985. Localización e inventario de las colonias de Arao común, Uria aalge Pontopp., en las costas de Galicia: determinación de las posibles causas de su desaparición. Boletín de la Estación Central de Ecología 28: 19-28.
  • Barrett R. T., Krasnov Y. V. 1996. Recent responses to changes in stocks of prey species by seabirds breeding in the southern Barents Sea. ICES J. Mar. Sci. 53:713-722. https://doi.org/10.1006/jmsc.1996.0090
  • Bermejo A., Rodríguez-Silvar J. 1983. Situación del arao común, Uria aalge ibericus, como especie nidificante de Galicia. Alytes I: 343-346.
  • Bernis F. 1948. Las aves de las islas Sisargas en julio. Bol. Soc. Esp. Hist. Nat. 46: 647-814.
  • Bonnaud E., Bourgeois K., Vidal E., et al. 2009. How can the Yelkouan shearwater survive feral cat predation? A meta-population structure as a solution? Pop. Ecol. 51:261-270. https://doi.org/10.1007/s10144-008-0134-0
  • Budge J., Barret R.T., Pedersen T. 2011. Optimal foraging in chick-raising Common Guillemots (Uria aalge). J. Ornithol. 152: 253-259. https://doi.org/10.1007/s10336-010-0578-9
  • Cabrero A., González-Nuevo G., Gago J., Cabanas, J.M. 2019. Study of sardine (Sardina pilchardus) regime shifts in the Iberian Atlantic waters. Fish. Oceanogr. 28: 305−316. https://doi.org/10.1111/fog.12410
  • Carrasquilla F. H. 1993. Catálogo provisional de los yacimientos con aves del Cuaternario de la Península Ibérica. Archaeofauna 2: 231-275.
  • Cendrero O. 2002. Sardine and anchovy crisis in northern Spain: natural variations or an effect of human activities? ICES Mar. Sci. 215: 279-285.
  • Cortés J.E., Fynlaison J.C., Mosquera M.A., García E.F.J. 1980. The birds of Gibraltar. Gibraltar Bookshop, Gibraltar.
  • Cury P.M., Boyd I., Bonhommeau S., et al. 2011. Global seabird response to forage fish depletion: one-third for the birds. Science 334: 1703-1706. https://doi.org/10.1126/science.1212928 PMid:22194577
  • Eastham A. 1986. The birds of Cueva de Nerja. In: Jordá J.F. (ed.): La prehistoria de la Cueva de Nerja (Málaga). Trabajos sobre la Cueva de Nerja 1: 109-131. Patronato de la Cueva de Nerja, Málaga, Spain.
  • Elorza M. 2014. Explotación de aves marinas en el Tardiglaciar del Golfo de Bizkaia: las aves de Santa Catalina. Kobie. Bizkaiko Arkeologi Indusketak -Excavaciones Arqueológicas en Bizkaia 4: 263-296.
  • Elorza M., Marco A. S. 1993. Postglacial fossil Great Auk and associated avian fauna from the Biscay Bay. Munibe Antro- pologia-Arkeologia 45: 179-185.
  • Enekvist E. 2003. Energy intake of common guillemot, Uria aalge, chicks at Stora Karlsö, Sweeden. Master Thesis, Gotland University. http://www.diva-portal.org/smash/get/diva2:279689/FULLTEXT01.pdf (last accessed 10/08/2022).
  • Erikstad K.E., Reiertsen T.K., Barrett R.T., et al. 2013. Seabird-fish interactions: the fall and rise of a common guillemot Uria aalge population. Mar. Ecol. Prog. Ser. 475:267-276. https://doi.org/10.3354/meps10084
  • Fagan W.F., Stephen R., Cosber C. 1998. How habitat edges change species interactions. Am. Nat. 153: 165-182. https://doi.org/10.1086/303162 PMid:29578760
  • Fayet A.L., Clucas G.V., Anker-Nilssen T., et al. 2021. Local prey shortages drive foraging costs and breeding success in a declining seabird, the Atlantic puffin. J. Anim. Ecol. 90: 1164. https://doi.org/10.1111/1365-2656.13442 PMid:33748966
  • Fernández-Chacón A., Genovart M., Pradel R., et al. 2013. When to stay, when to disperse and where to go: survival and dispersal patterns in a spatially structured seabird population. Ecography 36:1117-1126. https://doi.org/10.1111/j.1600-0587.2013.00246.x
  • Gaston A.J., Bertram D.F., Boyne A.W., et al. 2009. Changes in Canadian seabird populations and ecology since 1970 in relation to changes in oceanography and food webs. Environ. Rev. 17: 267-286. https://doi.org/10.1139/A09-013
  • Goyert H.F., Garton E.O., Poe A.J. 2018. Effects of climate change and environmental variability on the carrying capac- ity of Alaskan seabird populations. The Auk 135: 975-991. https://doi.org/10.1642/AUK-18-37.1
  • Harris M.P., Wanless S. 1984. Fish fed to young guillemots, Uria aalge, and used in display on the Isle of May, Scotland. J. Zool. 207: 441-458. https://doi.org/10.1111/j.1469-7998.1985.tb04942.x
  • Holling C.S. 1973. Resilience and stability of ecological sys- tems. Ann. Rev. Ecol. Sys. 4: 1-23. https://doi.org/10.1146/annurev.es.04.110173.000245
  • International Council for the Exploration of the Sea (ICES). 2017. Report of the working group on southern horse mack- erel, anchovy and sardine (WGHANSA), 24-29 June 2017, Bilbao, Spain. ICES CM 2017/ACOM 17. ICES, Copenhagen.
  • Harts A.M.F., Jaatinen K., Kokko H. 2016. Evolution of natal and breeding dispersal: when is a territory and asset worth protecting? Behav. Ecol. 27: 287-294. https://doi.org/10.1093/beheco/arv148
  • Junquera S. 1986. Pèche de l'anchois (Engraulis encrasicholus) dans le Golfe de Gascogne et sur le litoral atlantique de Galice depuis 1920. Variations quantitatives. Revue des Travaux de l'Institut des Pêches Maritimes 48: 133-142.
  • Junquera S. 1991. Study of the population diversity of anchovy (Engraulis encrasicolus L., 1758) (Pisces, Engraulidae) by means of the canonical analysis of morphological charac- ters and biological parameters, Doctoral thesis. University of Oviedo, Spain. 222 pp (In Spanish).
  • Keller V., Herrando S., Voříšek P., et al. 2021. European Breeding Bird Atlas. EBCC and Lynx Edicions, Barcelona. Lockley R.M. 1952. Note on the birds of the islands of the Berlenga (Portugal) and Desertas and Baixo (Madeira) and the selvages. Ibis 94: 144-157. https://doi.org/10.1111/j.1474-919X.1952.tb01795.x
  • Martínez-Abraín A. 2015. Are edge bird populations doomed to extinction: A response to Munilla et al. Biol. Conserv. 191: 843-844. https://doi.org/10.1016/j.biocon.2015.07.014
  • Martínez-Abraín A., Santidrián Tomillo P., et al. 2019. Delayed predator-prey collapses: the case of black-legged kittiwakes and Iberian sardines. Mar. Ecol. Prog. Ser. 631: 201-207. https://doi.org/10.3354/meps13164
  • Meade J., Hatchwell B.J., Blanchard J.L., Birkhead TR. 2013. The population increase of common guillemots (Uria aalge) on Skomer Island is explained by intrinsic demographic properties. J. Avian Biol. 44: 55-61. https://doi.org/10.1111/j.1600-048X.2012.05742.x
  • Mouriño J., Arcos F., Alcalde A. 2004. Arao Común Uria aalge. In: Madroño A., González C., Atienza J.C. (eds): Libro Rojo de las Aves Reproductoras de España, pp. 261-264. Dirección General para la Biodiversidad-SEO/BirdLife. Madrid.
  • Munilla I., Velando A. 2015. The Iberian guillemot population crash: a plea for action at the margins. Biol. Conserv. 100: 842. https://doi.org/10.1016/j.biocon.2015.07.015
  • Munilla I., Díez C., Velando A. 2007. Are edge bird populations doomed to extinction? A retrospective analysis of the com- mon guillemot collapse in Iberia. Biol. Conserv. 137: 359- 371. https://doi.org/10.1016/j.biocon.2007.02.023
  • Oro D. 2020. Perturbation, behavioural feedbacks, and population dynamics in social animals. Oxford University Press, Oxford. https://doi.org/10.1093/oso/9780198849834.001.0001
  • Oro D., Pradel R. 1999. Recruitment of Audouin's gull to the Ebro Delta colony at metapopulation level in the western Mediterranean. Mar. Ecol. Prog. Ser. 180: 267-273. https://doi.org/10.3354/meps180267
  • Öesterblom H., Olsson O. 2002. Changes in feeding behaviour and reproductive success in the Common Guillemot Uria aalge on the island of Stora Karlsö. Ornis Svecica: 1-2: 53- 62. https://doi.org/10.34080/os.v12.22836
  • Pasquet E. 1988. A study of the diet of common guillemot Uria aalge and razorbill Alca torda, wintering in French waters. Alauda 56: 8-21.
  • Reynolds S.J., Hughes B.J., Wearn C.P., et al. 2019. Long-term dietary shift and population decline of a pelagic seabird: A health check on the tropical Atlantic? Global Change Biol. 25: 1383-1394. https://doi.org/10.1111/gcb.14560 PMid:30712272
  • Rodionov S.N. 2004. A sequential algorithm for testing climate regime shifts. Geophys Res Lett 31: L09204. https://doi.org/10.1029/2004GL019448
  • Rodríguez-Silvar J., Bermejo A. 1975. Primera nidificación de la gaviota tridáctila (Rissa tridactyla) en el SW de Europa. Ardeola 21: 409−414.
  • Sandvik H., Erikstad K.E., Saether B-E. 2012. Climate affects seabird population dynamics both via reproduction and adult survival. Mar. Ecol. Prog. Ser. 454: 273-284. https://doi.org/10.3354/meps09558
  • Sanz-Aguilar A., Igual J.M., Tavecchia G., et al. 2016. When immigration masks threats: The rescue effect of a Scopoli's shearwater colony in the western Mediterranean as a case study. Biol. Conserv. 198: 33-36. https://doi.org/10.1016/j.biocon.2016.03.034
  • Schippers P., Stienen E W.M., Schotman A.G.M., et al. 2011. The consequences of being colonial: Allee effects in metapopulations of seabirds. Ecol. Model. 222: 3061-3070. https://doi.org/10.1016/j.ecolmodel.2011.05.022
  • Seward A., Ratcliffe N., Newton S., et al. 2019. Metapopulation dynamics of roseate terns: Sources, sinks and implications for conservation management decisions. J. Anim. Ecol. 88:138-153. https://doi.org/10.1111/1365-2656.12904 PMid:30353538
  • Sherley R.B., Underhill L.G., Barham B.J., et al. 2013. Influence of local and regional prey availability on breeding performance of African penguins Spheniscus demersus. Mar. Ecol. Prog. Ser. 473: 291-301. https://doi.org/10.3354/meps10070
  • Spendelow J.A., Nichols J.D., Nisbet I.C.T., et al. 1995. Estimating annual survival and movement rates of adult within a metapopulation of Roseate Terns. Ecology 76: 2415-2428. https://doi.org/10.2307/2265817
  • Tait W.C. 1924. The birds of Portugal. Nature 114: 8. https://doi.org/10.1038/114008b0
  • Tresset A. 2005. L'avifaune des sites mésolithiques et néolithiques (5500 à 2500 av. J.-C.) de Bretagne: implications ethnologiques et biogéographiques. Rev. Paléobiol. 84: 95.
  • Uriarte A., Prouzet P., Villamor B. 1996. Bay of Biscay and Ibe- ro Atlantic anchovy populations and their fisheries. Sci. Mar. 60 (Supl. 2): 237-255.
  • Waugh S.M., Barbraud C., Adams L., Freeman A. 2015. Mod- elling the demography and population dynamics of a sub- tropical seabird, and the influence of environmental factors. Condor 117: 147-164. https://doi.org/10.1650/CONDOR-14-141.1