Molecular dynamics simulation of the structure and interfacial free energy barriers of mixtures of ionic liquids and divalent salts near a graphene wall

  1. Gómez-González, Víctor 56789
  2. Docampo-Álvarez, Borja 56789
  3. Méndez-Morales, Trinidad 56789
  4. Cabeza, Oscar 1516171819
  5. Ivaništšev, Vladislav B. 1234
  6. Fedorov, Maxim V. 1011121314
  7. Gallego, Luis J. 56789
  8. Varela, Luis M. 56789
  1. 1 Institute of Chemistry
    info

    Institute of Chemistry

    Bratislava, Eslovaquia

    ROR https://ror.org/02te3c603

  2. 2 University of Tartu
    info

    University of Tartu

    Tartu, Estonia

    ROR https://ror.org/03z77qz90

  3. 3 Tartu 50411
  4. 4 Concordia International University Estonia
    info

    Concordia International University Estonia

    Tallin, Estonia

  5. 5 Grupo de Nanomateriales
  6. 6 Fotónica y Materia Blanda. Departamento de Física de Partículas
  7. 7 Facultade de Física
  8. 8 Universidade de Santiago de Compostela
    info

    Universidade de Santiago de Compostela

    Santiago de Compostela, España

    ROR https://ror.org/030eybx10

  9. 9 E-15782 Santiago de Compostela
  10. 10 Skolkovo Institute of Science and Technology
    info

    Skolkovo Institute of Science and Technology

    Skolkovo, Rusia

    ROR https://ror.org/03f9nc143

  11. 11 Moscow 143026
  12. 12 Russian Federation
  13. 13 Department of Physics
  14. 14 Scottish University Physics Alliance (SUPA)
  15. 15 Departamento de Física
  16. 16 Facultade de Ciencias
  17. 17 Universidade da Coruña
    info

    Universidade da Coruña

    La Coruña, España

    ROR https://ror.org/01qckj285

  18. 18 E-15071 A Coruña
  19. 19 Spain
Revista:
Physical Chemistry Chemical Physics

ISSN: 1463-9076 1463-9084

Año de publicación: 2017

Volumen: 19

Número: 1

Páginas: 846-853

Tipo: Artículo

DOI: 10.1039/C6CP07002G GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Physical Chemistry Chemical Physics

Objetivos de desarrollo sostenible

Resumen

A molecular dynamics study of mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) with magnesium tetrafluoroborate (Mg[BF4]2) confined between two parallel graphene walls is reported. The structure of the system is analyzed by means of ionic density profiles, lateral structure of the first layer close to the graphene surface and angular orientations of imidazolium cations. Free energy profiles for divalent magnesium cations are calculated using two different methods in order to evaluate the height of the potential barriers near the walls, and the results are compared with those of mixtures of the same ionic liquid and a lithium salt (Li[BF4]). Preferential adsorption of magnesium cations is analyzed using a simple model and compared to that of lithium cations, and vibrational densities of states are calculated for the cations close to the walls analyzing the influence of the graphene surface charge. Our results indicate that magnesium cations next to the graphene wall have a roughly similar environment to that in the bulk. Moreover, they face higher potential barriers and are less adsorbed on the charged graphene walls than lithium cations. In other words, magnesium cations have a more stable solvation shell than lithium ones

Referencias bibliográficas

  • Rogers, (2003), Science, 302, pp. 792, 10.1126/science.1090313
  • Seddon, (2003), Nat. Mater., 2, pp. 363, 10.1038/nmat907
  • P. Wasserscheid and T.Welton, Ionic liquids in synthesis, Wiley Online Library, 2003
  • Dupont, (2002), Chem. Rev., 102, pp. 3667, 10.1021/cr010338r
  • MacFarlane, (2007), Acc. Chem. Res., 40, pp. 1165, 10.1021/ar7000952
  • Armand, (2009), Nat. Mater., 8, pp. 621, 10.1038/nmat2448
  • Lu, (2012), J. Phys. Chem. B, 116, pp. 9160, 10.1021/jp304735p
  • Fedorov, (2014), Chem. Rev., 114, pp. 2978, 10.1021/cr400374x
  • Sakaebe, (2003), Electrochem. Commun., 5, pp. 594, 10.1016/S1388-2481(03)00137-1
  • García, (2004), Electrochim. Acta, 49, pp. 4583, 10.1016/j.electacta.2004.04.041
  • Henderson, (2004), Chem. Mater., 16, pp. 2881, 10.1021/cm049942j
  • Diaw, (2005), J. Power Sources, 146, pp. 682, 10.1016/j.jpowsour.2005.03.068
  • Zhou, (2010), J. Phys. Chem. C, 114, pp. 6201, 10.1021/jp911759d
  • Lee, (2005), Green Chem., 109, pp. 13663
  • Nicotera, (2005), J. Phys. Chem. B, 109, pp. 22814, 10.1021/jp053799f
  • Castriota, (2005), J. Phys. Chem. A, 109, pp. 92, 10.1021/jp046030w
  • Lassègues, (2006), Phys. Chem. Chem. Phys., 8, pp. 5629, 10.1039/B615127B
  • Markevich, (2006), Electrochem. Commun., 8, pp. 1331, 10.1016/j.elecom.2006.06.002
  • Xu, (2006), J. Power Sources, 160, pp. 621, 10.1016/j.jpowsour.2006.01.054
  • Seki, (2006), J. Phys. Chem. B, 110, pp. 10228, 10.1021/jp0620872
  • Egashira, (2007), J. Power Sources, 174, pp. 560, 10.1016/j.jpowsour.2007.06.123
  • Saito, (2007), J. Phys. Chem. B, 111, pp. 11794, 10.1021/jp072998r
  • Borgel, (2009), J. Power Sources, 189, pp. 331, 10.1016/j.jpowsour.2008.08.099
  • Lassègues, (2009), J. Phys. Chem. A, 113, pp. 305, 10.1021/jp806124w
  • Nicolau, (2010), J. Phys. Chem. B, 114, pp. 8350, 10.1021/jp103810r
  • Zhou, (2010), Chem. Mater., 22, pp. 1203, 10.1021/cm902691v
  • Menne, (2013), Electrochem. Commun., 31, pp. 39, 10.1016/j.elecom.2013.02.026
  • Yoon, (2013), Energy Environ. Sci., 6, pp. 979, 10.1039/c3ee23753b
  • Castiglione, (2014), J. Phys. Chem. B, 118, pp. 13679, 10.1021/jp509387r
  • Aguilera, (2015), Phys. Chem. Chem. Phys., 17, pp. 27082, 10.1039/C5CP03825A
  • Gómez-González, (2015), J. Chem. Phys., 143, pp. 124507, 10.1063/1.4931656
  • Méndez-Morales, (2013), J. Phys. Chem. B, 117, pp. 3207, 10.1021/jp312669r
  • Méndez-Morales, (2014), J. Phys. Chem. B, 118, pp. 761, 10.1021/jp410090f
  • Méndez-Morales, (2015), Phys. Chem. Chem. Phys., 17, pp. 5298, 10.1039/C4CP04668D
  • Russina, (2015), J. Mol. Liq., 205, pp. 16, 10.1016/j.molliq.2014.08.007
  • Méndez-Morales, (2014), Phys. Chem. Chem. Phys., 16, pp. 13271, 10.1039/C4CP00918E
  • Ivaništšev, (2016), Phys. Chem. Chem. Phys., 18, pp. 1302, 10.1039/C5CP05973A
  • Cheek, (2008), J. Electrochem. Soc., 155, pp. D91, 10.1149/1.2804763
  • Giffin, (2014), J. Phys. Chem. C, 118, pp. 9966, 10.1021/jp502354h
  • Vardar, (2014), ACS Appl. Mater. Interfaces, 6, pp. 18033, 10.1021/am5049064
  • Saha, (2015), Electrochim. Acta, 183, pp. 42, 10.1016/j.electacta.2015.05.018
  • D. V. D. Spoel , E.Lindahl, B.Hess, A. R. V.Buuren, E.Apol, P. J.Meulenhoff, D. P.Tieleman, A. L. T. M.Sijbers, K. A.Feenstra, R. V.Drunen and H. J. C.Berendsen, Gromacs User Manual version 4.6.7, http://www.Gromacs.org, 2014
  • Jorgensen, (1986), J. Phys. Chem., 90, pp. 1276, 10.1021/j100398a015
  • Payal, (2012), ChemPhysChem, 13, pp. 1764, 10.1002/cphc.201100871
  • Kislenko, (2009), Phys. Chem. Chem. Phys., 11, pp. 5584, 10.1039/b823189c
  • Fedorov, (2012), Phys. Chem. Chem. Phys., 14, pp. 2552, 10.1039/c2cp22730d
  • Lynden-Bell, (2012), Phys. Chem. Chem. Phys., 14, pp. 2693, 10.1039/c2cp23267g
  • Pinilla, (2005), J. Phys. Chem. B, 109, pp. 17922, 10.1021/jp052999o
  • Kornyshev, (2007), J. Phys. Chem. B, 111, pp. 5545, 10.1021/jp067857o
  • Fedorov, (2008), Electrochim. Acta, 111, pp. 6835, 10.1016/j.electacta.2008.02.065
  • Maolin, (2008), J. Chem. Phys., 128, pp. 134504, 10.1063/1.2898497
  • Feng, (2009), J. Phys. Chem. C, 113, pp. 4549, 10.1021/jp809900w
  • Kislenko, (2009), Phys. Chem. Chem. Phys., 11, pp. 5584, 10.1039/b823189c
  • Wang, (2010), J. Phys. Chem. C, 114, pp. 990, 10.1021/jp902225n
  • Dou, (2011), J. Phys.: Condens. Matter, 23, pp. 175001
  • Ivaništšev, (2014), Electrochem. Commun., 48, pp. 61, 10.1016/j.elecom.2014.08.014
  • Ivaništšev, (2015), J. Phys.: Condens. Matter, 27, pp. 102101
  • Salanne, (2015), Phys. Chem. Chem. Phys., 17, pp. 14270, 10.1039/C4CP05550K
  • Docampo-Álvarez, (2016), J. Phys.: Condens. Matter, 28, pp. 464001
  • Rotenberg, (2015), J. Phys. Chem. Lett., 6, pp. 4978, 10.1021/acs.jpclett.5b01889
  • Kornyshev, (2014), J. Phys. Chem. C, 118, pp. 18285, 10.1021/jp5047062
  • Kirchner, (2013), Electrochim. Acta, 110, pp. 762, 10.1016/j.electacta.2013.05.049
  • Wallauer, (2013), Z. Naturforsch., B: J. Chem. Sci., 68, pp. 1143, 10.5560/znb.2013-3153
  • Ivaništšev, (2014), J. Phys. Chem. C, 118, pp. 5841, 10.1021/jp4120783
  • J. P. Hansen and I. R.McDonald, Theory of simple liquids, Academic Press, Oxford, 1986