Atmospheric Tomography Using Convolutional Neural Networks
- C. González-Gutiérrez 15
- O. Beltramo-Martin 2
- J. Osborn 3
- José Luis Calvo-Rolle 4
- Cos Juez, F.J. de 15
- 1 Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (Oviedo)
-
2
Aix-Marseille University
info
-
3
Durham University
info
-
4
Universidade da Coruña
info
-
5
Universidad de Oviedo
info
- Cesar Analide (ed. lit.)
- Paulo Novais (ed. lit.)
- David Camacho (ed. lit.)
- Hujun Yin (ed. lit.)
Editorial: Springer International Publishing AG
ISBN: 978-3-030-62362-3, 978-3-030-62361-6, 978-3-030-62364-7, 978-3-030-62365-4
Año de publicación: 2020
Título del volumen: Part II
Volumen: 2
Páginas: 561-569
Congreso: Intelligent Data Engineering and Automated Learning – IDEAL (21. 2020. Guimarães)
Tipo: Aportación congreso
Resumen
We present an application of Convolutional Neural Networks (CNN) to atmospheric tomography that is required for compensating optical aberrations introduced by the atmospheric turbulence using dedicated tomographic Adaptive Optics (AO) systems.We compare the state of the art Minimum Mean Square Error (MMSE) reconstructor with a Multi-Layer Perceptron (MLP) and a CNN architecture and show that the CNN performs up to 15%–20% better than the MMSE and is more robust to atmospheric profile variations up to 10% compared to the MLP. Such results pave the way to implement CNN architectures to revisit atmospheric tomography for astronomical telescopes equipped with AO.