Interaction between groundwater and underground constructions

  1. Pujades Garnes, Estanislao
Dirigida por:
  1. Enric Vázquez Suñé Director/a
  2. Daniel Fernández García Director/a
  3. Jesús Carrera Ramírez Director/a

Universidad de defensa: Universitat Politècnica de Catalunya (UPC)

Fecha de defensa: 27 de noviembre de 2013

Tribunal:
  1. Peter Huggenberger Presidente/a
  2. Alberto Ledesma Villalba Secretario/a
  3. Jordi Delgado Martín Vocal

Tipo: Tesis

Teseo: 374774 DIALNET lock_openTDX editor

Resumen

Underground constructions below the water table may be problematic if the role of groundwater is not properly acknowledged. Difficulties worsen in urban environments. Two aspects should be taken into account in the interaction between underground constructions and groundwater, 1) the impacts caused by the construction in the aquifers and 2) the difficulties that groundwater causes during the construction. Therefore, the design of an underground construction must be minimize the impacts in the underground environment as well as guaranteeing the safety of the workers and the integrity of adjacent structures. The adopted measures must not complicate the development of the construction and must not increase the total cost. To sum up, the construction must be efficient. These questions arose during the construction of the High Speed Train (HST) tunnel in Barcelona, which passes next to the Sagrada Familia. This thesis proposes answers to the questions which came up. Two problems may arise when a construction intersects an aquifer, the drain and the barrier effect. While the former has been widely studied, the second has not been adequately formalized and this is the first aim of the thesis. Analytical solutions are obtained to compute the head variations caused by an underground impervious structure. The solutions allow computing of the impact under different circumstances and to design corrective measures. The proposed equations were verified by using the data from real underground constructions. Subsidence caused by dewatering processes of deep excavations is feared. This fact affects the design. One option to reduce subsidences consist on deepen the enclosures (diaphragm walls, piles, jet-grouting piles) in order to avoid or minimise the dewatering. The second objective is to discuss the effectiveness of this measure, which rise the cost of the constructions, since drawdown caused by pumping are usually small and less dangerous (poorly differential) than is expected. Moreover, the pumping stabilizes the bottom of excavations. Therefore, to deepen the enclosures may be less efficient than combining short enclosures with deep pumping wells. Both alternatives must be compared. Thus, a number of dewatering scenarios, where the depth of the enclosures and the pumping wells are varied, are compared considering the safety, the outside affectations and the cost. Results show that combining deep pumping wells with short enclosures can become the most efficient method to perform excavations in preconsolidated soils. Regardless of the method used to perform an excavation, the enclosure, always, plays an important role since it guarantees the stability of the excavation walls and prevents the entrance of lateral flow. The presence of small defects may lead to disastrous consequences, which would invalidate all the previous work oriented to develop an efficient construction. Therefore, given that the defects are relatively common, that the techniques used to detect defects are limited and that the groundwater behaviour taking into account underground structures can be predicted, the third objective of the thesis is to develop hydraulic methods to assess the state of an enclosure. These methods, specifically the Watertightness Assessment Test (WTAT), are used as much to estimate the effective parameters of the enclosure as to locate the defects. Finally, the steps followed during the construction of the HST tunnel in Barcelona demonstrate the importance of the geological characterisation. If the soil is well known, all the aspects associated with the construction can be predicted accurately, which is crucial for designing an efficient underground construction. The geology, the hydrogeology and the historical processes suffered by the soil must be characterized accurately.