Análisis integral del lavado y arrastre de sólidos en suspensión en cuencas urbanas utilizando un simulador de lluvia a escala real

  1. Naves, Juan
  2. Puertas, Jerónimo
  3. Suárez, Joaquín
  4. Anta, Jose
Revista:
Ingeniería del agua

ISSN: 1134-2196

Año de publicación: 2022

Volumen: 26

Número: 4

Páginas: 231-243

Tipo: Artículo

DOI: 10.4995/IA.2022.18023 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Ingeniería del agua

Objetivos de desarrollo sostenible

Resumen

Ante la falta de datos experimentales precisos para el desarrollo y validación de modelos de lavado y transporte de sedimentos en la superficie de cuencas urbanas, en este estudio se presenta una serie de ensayos en los que los procesos involucrados son medidos con detalle en un modelo físico de drenaje urbano dual de 36 m2 a escala real. Durante los experimentos, se han analizado tres intensidades de lluvia y cinco clases de sedimento y se han medido calados y velocidades en superficie; calados en colectores; caudales, concentraciones de SST y distribuciones de tamaños de partícula en el flujo de entrada a las arquetas y en el punto de vertido de la red de colectores; y se han realizado balances de masas a partir del sedimento que queda depositado en las distintas partes del modelo. Todos los datos brutos y procesados obtenidos se encuentran disponibles en el repositorio de acceso abierto Zenodo (https://zenodo.org/communities/washtreet).

Información de financiación

Financiadores

Referencias bibliográficas

  • Anta, J., Peña, E., Suárez, J., Cagiao, J. 2006. A BMP selection process based on the granulometry of runoff solids in a separate urban catchment, Water Sa, 32(3), 419-428. https://doi.org/10.4314/wsa.v32i3.5268
  • APHA. 1995 Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC, USA.
  • Bladé, E., Cea, L., Corestein, G., Escolano, E., Puertas, J., Vázquez-Cendón, E., Dolz, J., Coll, A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(1), 1-10. https://doi.org/10.1016/j.rimni.2012.07.004
  • Deletic, A., Maksimovic, E., Ivetic, M. 1997. Modelling of storm wash-off of suspended solids from impervious surfaces, Journal of Hydraulic Research, 35(1), 99-118. https://doi.org/10.1080/00221689709498646
  • Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., Tassin, B. 2015. Microplastic contamination in an urban area: a case study in Greater Paris. Environmental Chemistry, 12(5),592-599. https://doi.org/10.1071/EN14167
  • Egodawatta, P., Thomas, E., Goonetilleke, A. 2007 Mathematical interpretation of pollutant wash-off from urban road surfaces using simulated rainfall. Water Research, 41(13), 3025-3031. https://doi.org/10.1016/j.watres.2007.03.037
  • Herngren, L. F. 2005 Build-up and Wash-off Process Kinetics of PAHs and Heavy Metals on Paved Surfaces Using Simulated Rainfall, Doctoral dissertation, Queensland University of Technology, Brisbane, Queensland, Australia, 2005.
  • Hong, M., Bonhomme, C., Le, M.H., Chebbo, G. 2016. A new approach of monitoring and physically-based modelling to investigate urban wash-off process on a road catchment near Paris. Water Research, 102, 96-108. https://doi.org/10.1016/j.watres.2016.06.027
  • Morgan, D., Johnston, P., Osei, K., Gill, L. 2017. "Sediment build-up on roads and footpaths of a residential area." Urban Water Journal,14(4), 378-385. https://doi.org/10.1080/1573062X.2016.1148182
  • Muthusamy, M., Tait, S., Schellart, A., Beg, M.N.A., Carvalho, F.R., de Lima, J.L.M.P. 2018. Improving understanding of the underlying physical process of sediment wash-off from urban road surfaces. Journal of Hydrology, 557, 426-433. https://doi.org/10.1016/j.jhydrol.2017.11.047
  • Naves, J., Jikia, Z., Anta, J., Puertas, J., Suárez, J., Regueiro-Picallo, M. 2017. Experimental study of pollutant washoff on a fullscale street section physical model. Water Science and Technology, 76(10), 2821-2829. https://doi.org/10.2166/wst.2017.345
  • Naves, J., Anta J., Puertas J., Regueiro-Picallo, M., Suárez, J. 2019a. Using a 2D shallow water model to assess Large-scale Particle Image Velocimetry (LSPIV) and Structure from Motion (SfM) techniques in a street-scale urban drainage physical model. Journal of Hydrology, 575, 54-65. https://doi.org/10.1016/j.jhydrol.2019.05.003
  • Naves, J., Anta, J., Suárez, J., Puertas, J. 2019b. [Dataset] WASHTREET Hydraulic, wash-off and sediment transport experimental data in an urban drainage physical model, Zenodo http://doi.org/10.5281/zenodo.3233918 https://doi.org/10.1038/s41597-020-0384-z
  • Naves, J., Puertas, J., Suárez, J., Anta, J. 2019c. [Dataset] WASHTREET Runoff velocity data using different Particle Image Velocimetry (PIV) techniques in a full scale urban drainage physical model, Zenodo, http://doi.org/10.5281/zenodo.3239401
  • Naves, J., Anta, J., Suárez, J., Puertas, J. 2019d. [Dataset] WASHTREET Application of Structure from Motion (SfM) photogrammetric technique to determine surface elevations in an urban drainage physical model, Zenodo, http://doi.org/10.5281/zenodo.3241337
  • Naves, J., Rieckermann, J., Cea, L., Puertas, J. Anta, J. 2020a. Global and local sensitivity analysis to improve the understanding of physically-based urban wash-off models from high-resolution laboratory experiments Science of the Total Environment, 709, 136152. https://doi.org/10.1016/j.scitotenv.2019.136152
  • Naves, J., Anta, J., Suárez, J., Puertas, J. 2020b. Development and calibration of a new dripper-based rainfall simulator for largescale sediment wash-off studies Water, 12(1), 152. https://doi.org/10.3390/w12010152
  • Naves, J., Anta, J., Suárez, J., Puertas, J. 2020c. Hydraulic, wash-off and sediment transport experiments in a full-scale urban drainage physical model. Scientific Data, 7, 44. https://doi.org/10.1038/s41597-020-0384-z
  • Naves, J., Anta, J., Suárez, J., Puertas, J. 2021. Assessing different imaging velocimetry techniques to measure shallow runoff velocities during rain events using an urban drainage physical model. Hydrology and Earth System Science. 25, 885-900. https://doi.org/10.5194/hess-25-885-2021
  • Regueiro-Picallo, M., Anta, J., Suárez, J., Puertas, J., Jácome, A., Naves, J. 2018. Characterisation of sediments during transport of solids in circular sewer pipes. Water Science and Technology, 2017(1), 8-15. https://doi.org/10.2166/wst.2018.055
  • Rossi, L., Chèvre, N., Fankhauser, R., Krejci, V. 2009. Probabilistic environmental risk assessment of urban wet-weather discharges: an approach developed for Switzerland, Urban Water Journal, 6(5), 355-367. https://doi.org/10.1080/15730620902934801
  • Rossman, L.A. 2015. Storm Water Management Model, User's Manual, Version 5.1 No. EPA/600/R-05/040. US Environmental Protection Agency, Cincinnati, OH, USA.
  • Sandoval, S., Vezzaro, L., Bertrand-Krajewski, J.L. 2018. Revisiting conceptual stormwater quality models by reconstructing virtual state variables, Water Science and Technology, 78(3), 655-663. https://doi.org/10.2166/wst.2018.337
  • Sartor, J.D., Boyd, G.B. 1972. Water Pollution Aspects of Street Surface Contaminants. EPA-R2-72-081. United States Environmental Protection Agency, Washington, DC, USA.
  • Schellart, A.N.A., Tait, S.J., Ashley, R.M. 2010. Towards quantification of uncertainty in predicting water quality failures in integrated catchment model studies, Water Research, 44(13), 3893-3904. https://doi.org/10.1016/j.watres.2010.05.001
  • Shaw, S. B., Walter, M.T., Steenhuis, T.S. 2006. A physical model of particulate wash-off from rough impervious surfaces. Journal of Hydrology, 327(3-4), 618-626. https://doi.org/10.1016/j.jhydrol.2006.01.024
  • Sikorska, A.E., Del Giudice, D., Banasik, K., Rieckermann, J. 2015. The value of streamflow data in improving TSS predictions-Bayesian multi-objective calibration. Journal of Hydrology, 530, 241-254. https://doi.org/10.1016/j.jhydrol.2015.09.051
  • Wijesiri, B., Egodawatta, P., McGree, J., Goonetilleke, A. 2017. Process variability of pollutant build-up on urban road surfaces, Science of Total Environment, 518, 434-440. https://doi.org/10.1016/j.scitotenv.2015.03.014
  • Zafra, C.A., Temprano, J., Tejero, I. 2008. Particle size distribution of accumulated sediments on an urban road in rainy weather. Environmental technology, 29(5), 571-582. https://doi.org/10.1080/09593330801983532
  • Zafra, C., Temprano, J., Suárez, J. 2017. A simplified method for determining potential heavy metal loads washed-off by stormwater runoff from road-deposited sediments, Science of Total Environment, 601, 260-270. https://doi.org/10.1016/j.scitotenv.2017.05.178