From Mesh to Meshlessa Generalized Meshless Formulation Based on Riemann Solvers for Computational Fluid Dynamics
- Eirís Barca, Antonio
- Xesús Nogueira Co-director
- Luís Ramírez Co-director
Universidade de defensa: Universidade da Coruña
Fecha de defensa: 24 de marzo de 2022
- Fermín Navarrina Martínez Presidente
- Luis Cueto-Felgueroso Landeira Secretario/a
- Sofiane Khelladi Vogal
Tipo: Tese
Resumo
Desde métodos con malla a métodos sen malla: Unha formulación sen malla xeneralizada baseada en solvers de Riemann para Dinámica de Fluidos Computacional. Esta tese trata sobre o desenvolvemento de métodos sen malla de alta precisión para a simulación de fluxos compresibles e incompresibles. Os métodos sen malla foron creados para superar as restricións que a conectividade da malla impón sobre os métodos tradicionais. A pesar de ter acadado un éxito relativo nalgunhas aplicacións, a realidade é que os métodos con malla seguen sendo a opción preferente para o cálculo de fluxos que demandan alta precisión. No canto de asumir que os métodos sen malla e con malla son grupos que seguen camiños de desenvolvemento independentes, nesta tese proponse incrementar a precisión dos métodos sen malla tomando como guía algunha das técnicas de máis éxito empregadas na comunidade dos métodos con malla. O punto de partida para o desenvolvemento inspírase no esquema SPH-ALE proposto por Vila. A flexibilidade do marco de referencia ALE e a introducción dos solvers de Riemann son os elementos esenciais utilizados nesta tese. A alta precisión acádase coa técnica de Mínimos Cadrados Móbiles (MLS). MLS serve para múltiples tarefas na implementación do esquema: acadar alto orde de reconstrución nos estados de Riemann, avaliacións máis precisas dos fluxos viscosos e troco da aproximación limitada tipo kernel por unha aproximación MLS con grado de consistencia polinómica arbitraria. A estabilización do esquema para fluxos compresibles con descontinuidades baséase nunha técnica de estabilización a posteriori (MOOD) que introduce unha importante mellora con respecto a os tradicionais limitadores de fluxo a priori. O esquema MLSPH-ALE ´e a primeira formulación sen malla proposta que emprega a técnica de aproximación MLS con alta consistencia nun marco de referencia ALE. Ademais, o procedemento seguido para obter a forma semi-discreta realiza o seguimento dun termo na fronteira que facilita a implementación das condicións de contorno. Outra importante contribución relacionase co concepto xeral da formulación MLSPHALE proposta. Demostrase que o esquema MLSPH-ALE é unha formulación sen malla global que con certas configuración particulares rende as mesmas formas semi-discretas que outras formulacións publicadas. O método MLSPH-ALE foi posto a proba fronte o cálculo de fluxos turbulentos. A baixa disipación implícita aportada polo solver de Riemann fai que o esquema sexa apto para acometer o modelado da turbulencia cos modelos implícitos LES. A formulación proposta captura a cascada de enerxía no rango de réxime subsónico, onde os métodos tradicionais SPH presentan deficiencias.