Comparative analysis of reported physical activity from leisure centres’ members versus the general population in Spain

  1. Alejandro López-Valenciano 2
  2. Elizabeth Horton 1
  3. Xián Mayo 2
  4. Alfonso Jiménez 256
  5. Ivan Clavel 3
  6. Gary Liguori 4
  7. Jorge López Fernández 15
  1. 1 Coventry University
    info

    Coventry University

    Coventry, Reino Unido

    ROR https://ror.org/01tgmhj36

  2. 2 Universidad Rey Juan Carlos
    info

    Universidad Rey Juan Carlos

    Madrid, España

    ROR https://ror.org/01v5cv687

  3. 3 Universidade da Coruña
    info

    Universidade da Coruña

    La Coruña, España

    ROR https://ror.org/01qckj285

  4. 4 University of Rhode Island
    info

    University of Rhode Island

    Kingston, Estados Unidos

    ROR https://ror.org/013ckk937

  5. 5 GO fit LAB. Ingesport-GO fit
  6. 6 Sheffield Hallam University
    info

    Sheffield Hallam University

    Sheffield, Reino Unido

    ROR https://ror.org/019wt1929

Revista:
BMJ Open

ISSN: 2044-6055

Año de publicación: 2021

Volumen: 11

Número: 6

Páginas: e043963

Tipo: Artículo

DOI: 10.1136/BMJOPEN-2020-043963 GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: BMJ Open

Objetivos de desarrollo sostenible

Resumen

Objectives (1) To describe the physical activity (PA) levels of the members of a Spanish leisure centre operator according to age and gender; (2) to describe the differences in the three PA levels between the members of a Spanish leisure centre operator and the general Spanish population considering the PA Eurobarometer data according to their gender and age and (3) to explore the intensity origin of the PA either in Spanish members of leisure centres or the Spanish population considering their gender.Design Descriptive epidemiology study.Participants Data from 16 Spanish leisure centres (n=3627) and from the 2017 Eurobarometer 472 for Spain (n=1002) were used for this research.Primary and secondary outcomes measures The PA levels were analysed with the International Physical Activity Questionnaire short version, and respondents were grouped into physical inactivity (PIA), moderate-PA and high-PA. Moreover, gender (men or women) and age (18–29 years; 30–44 years; 45–59 years; 60–69 years; ≥70 years) were considered. Total metabolic equivalent (MET)-min/week, as well as total MET-min/week for walking intensity, moderate intensity and vigorous intensity were recorded.Results Leisure centres showed a lower prevalence of PIA and a higher prevalence of high-PA than the general population (p<0.05). Women displayed a higher prevalence of PIA and lower prevalence of high-PA than men (p<0.05). The prevalence of PIA increases with age while the prevalence of high-PA decreases.Conclusion Leisure centres engage most of their members in regular PA, including women and older adults, and these members also perform a higher number of MET in vigorous PA, than the general population.Data are available in a public, open access repository. Data are available upon reasonable request. The raw data of the Eurobarometer 472 is owned by the European Commission and available online: <https://dbk.gesis.org/dbksearch/sdesc2.asp?no=6939&search=Physicalfitnessandexercise&search2=&field=all&field2=&DB=e&tab=0&notabs=&nf=1&af=&ll=10>. The raw data from the Spanish fitness centre operator is owned by GO fit-Ingesport Health & Spa Consulting SA. To request access to this data contact to the corresponding author.

Referencias bibliográficas

  • World Health Organization. Global recommendations on physical activity for health. Geneva, Switzerland: World Health Organization, 2010.Google Scholar
  • ↵Tremblay MS, Aubert S, Barnes JD, et al. Sedentary behavior research network (SBRN) – terminology consensus project process and outcome. Int J Behav Nutr Phys Act 2017;14:75. doi:10.1186/s12966-017-0525-8Google Scholar
  • ↵Bull FC, Al-Ansari SS, Biddle S, et al. World Health organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 2020;54:1451–62.doi:10.1136/bjsports-2020-102955pmid:http://www.ncbi.nlm.nih.gov/pubmed/33239350Abstract/FREE Full TextGoogle Scholar
  • ↵Lee I-M, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 2012;380:219–29.doi:10.1016/S0140-6736(12)61031-9pmid:http://www.ncbi.nlm.nih.gov/pubmed/22818936CrossRefPubMedWeb of ScienceGoogle Scholar
  • ↵Stamatakis E, Bull FC. Putting physical activity in the 'must-do' list of the global agenda. Br J Sports Med 2020;54:1445–6.doi:10.1136/bjsports-2020-103509pmid:http://www.ncbi.nlm.nih.gov/pubmed/33239347FREE Full TextGoogle Scholar
  • ↵Ding D, Lawson KD, Kolbe-Alexander TL, et al. The economic burden of physical inactivity: a global analysis of major non-communicable diseases. Lancet 2016;388:1311–24.doi:10.1016/S0140-6736(16)30383-Xpmid:http://www.ncbi.nlm.nih.gov/pubmed/27475266CrossRefPubMedGoogle Scholar
  • ↵EU Working Group “Sport and Health. Eu physical activity guidelines recommended policy actions in support of health-enhancing physical activity. Brussels, Belgium: European Commission, 2008.Google Scholar
  • ↵World Health Organization. Global action plan on physical activity 2018-2030: more active people for a healthier world. Geneva, Switzerland: World Health Organization, 2018.Google Scholar
  • ↵World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013-2020. Geneva, Switzerland: World Health Organization, 2013.Google Scholar
  • ↵Mayo X, Liguori G, Iglesias-Soler E, et al. The active living gender's gap challenge: 2013-2017 Eurobarometers physical inactivity data show constant higher prevalence in women with no progress towards global reduction goals. BMC Public Health 2019;19:1677. doi:10.1186/s12889-019-8039-8pmid:http://www.ncbi.nlm.nih.gov/pubmed/31830956PubMedGoogle Scholar
  • ↵Mayo X, Del Villar F, Iglesias-Soler E, et al. A retrospective analysis of policy development on compliance with World Health organization's physical activity recommendations between 2002 and 2005 in European Union adults: closing the gap between research and policy. BMC Public Health 2018;18:1081. doi:10.1186/s12889-018-5986-4pmid:http://www.ncbi.nlm.nih.gov/pubmed/30165825PubMedGoogle Scholar
  • ↵Glass TA, McAtee MJ. Behavioral science at the crossroads in public health: extending horizons, envisioning the future. Soc Sci Med 2006;62:1650–71.doi:10.1016/j.socscimed.2005.08.044pmid:http://www.ncbi.nlm.nih.gov/pubmed/16198467CrossRefPubMedWeb of ScienceGoogle Scholar
  • ↵Byambasukh O, Snieder H, Corpeleijn E. Relation between leisure time, commuting, and occupational physical activity with blood pressure in 125 402 adults: the lifelines cohort. J Am Heart Assoc 2020;9:1–23.doi:10.1161/JAHA.119.014313pmid:http://www.ncbi.nlm.nih.gov/pubmed/32067583PubMedGoogle Scholar
  • ↵Rosique-Esteban N, Babio N, Díaz-López A, et al. Leisure-Time physical activity at moderate and high intensity is associated with parameters of body composition, muscle strength and sarcopenia in aged adults with obesity and metabolic syndrome from the PREDIMED-Plus study. Clin Nutr 2019;38:1324–31.doi:10.1016/j.clnu.2018.05.023pmid:http://www.ncbi.nlm.nih.gov/pubmed/29910068PubMedGoogle Scholar
  • ↵Liu Y, Shu X-O, Wen W, et al. Association of leisure-time physical activity with total and cause-specific mortality: a pooled analysis of nearly a half million adults in the Asia cohort Consortium. Int J Epidemiol 2018;47:771–9.doi:10.1093/ije/dyy024pmid:http://www.ncbi.nlm.nih.gov/pubmed/29490039PubMedGoogle Scholar
  • ↵DeloitteEuropeActive. European health & fitness market report (EHFMR). Deloitte, 2019.Google Scholar
  • ↵Beedie C, Mann S, Jimenez A. Community fitness center-based physical activity interventions: a brief review. Curr Sports Med Rep 2014;13:267–74.doi:10.1249/JSR.0000000000000070pmid:http://www.ncbi.nlm.nih.gov/pubmed/25014393CrossRefPubMedGoogle Scholar
  • ↵Lopez-Fernandez J, Jiménez A. It is time for the fitness & wellness industry to lead the agenda against physical inactivity. Res Invest Sports Med 2018;2:1–3.doi:10.31031/RISM.2018.02.000535Google Scholar
  • ↵Annesi J. Effects of a cognitive behavioral treatment package on exercise attendance and drop out in fitness centers. Eur J Sport Sci 2003;3:1–16.doi:10.1080/17461390300073206Google Scholar
  • ↵IHRSA. The IHRSA global report. Boston: International Health Racquet and Sportsclub Association, 2018.Google Scholar
  • ↵Clavel I, Iglesias-Soler E, Garcia-Unanue J. A model for predicting dropouts from physical activity interventions in leisure centres. Sport Sci Health 2020:1–8.doi:10.1007/s11332-020-00626-6Google Scholar
  • ↵Paruthi G, Raj S, Colabianchi N. Finding the sweet spot (S) understanding context to support physical activity plans. Proc ACM Inter Mobile Wearable Ubiquit Tech 2018;2:1–17.doi:10.1145/3191761Google Scholar
  • ↵Kaphingst KA, Bennett GG, Sorensen G, et al. Body mass index, physical activity, and dietary behaviors among members of an urban community fitness center: a questionnaire survey. BMC Public Health 2007;7:181. doi:10.1186/1471-2458-7-181pmid:http://www.ncbi.nlm.nih.gov/pubmed/17655750PubMedGoogle Scholar
  • ↵Schroeder EC, Welk GJ, Franke WD, et al. Associations of health club membership with physical activity and cardiovascular health. PLoS One 2017;12:e0170471. doi:10.1371/journal.pone.0170471pmid:http://www.ncbi.nlm.nih.gov/pubmed/28107459PubMedGoogle Scholar
  • ↵Bauman A, Bull F, Chey T, et al. The International prevalence study on physical activity: results from 20 countries. Int J Behav Nutr Phys Act 2009;6:21. doi:10.1186/1479-5868-6-21pmid:http://www.ncbi.nlm.nih.gov/pubmed/19335883CrossRefPubMedGoogle Scholar
  • ↵Carlson SA, Fulton JE, Schoenborn CA, et al. Trend and prevalence estimates based on the 2008 physical activity guidelines for Americans. Am J Prev Med 2010;39:305–13.doi:10.1016/j.amepre.2010.06.006pmid:http://www.ncbi.nlm.nih.gov/pubmed/20837280CrossRefPubMedWeb of ScienceGoogle Scholar
  • ↵Guthold R, Stevens GA, Riley LM, et al. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet Glob Health 2018;6:e1077–86.doi:10.1016/S2214-109X(18)30357-7pmid:http://www.ncbi.nlm.nih.gov/pubmed/30193830PubMedGoogle Scholar
  • ↵Watts P, Webb E, Netuveli G. The role of sports clubs in helping older people to stay active and prevent frailty: a longitudinal mediation analysis. Int J Behav Nutr Phys Act 2017;14:95. doi:10.1186/s12966-017-0552-5pmid:http://www.ncbi.nlm.nih.gov/pubmed/28705220PubMedGoogle Scholar
  • ↵European Opinion Research Group. Special Eurobarometer 472. Brusels, Belgium: European Commision, 2018.Google Scholar ↵IPAQ Group. International physical activity questionnaire. guidelines for data processing and analysis of the International physical activity questionnaire (IPAQ) – short and long forms, 2005.Google Scholar
  • ↵Gerovasili V, Agaku IT, Vardavas CI, et al. Levels of physical activity among adults 18-64 years old in 28 European countries. Prev Med 2015;81:87–91.doi:10.1016/j.ypmed.2015.08.005pmid:http://www.ncbi.nlm.nih.gov/pubmed/26299619PubMedGoogle Scholar
  • ↵Cheng HL. A simple, easy-to-use spreadsheet for automatic scoring of the International physical activity questionnaire (IPAQ) short form. ResearchGate 2016.doi:10.13140/RG.2.2.21067.80165Google Scholar
  • ↵Gjestvang C, Stensrud T, Hansen BH, et al. Are fitness Club members likely to meet the current physical activity recommendations? Transl Sports Med 2020;3:75–83.doi:10.1002/tsm2.120Google Scholar
  • ↵Hansen BH, Kolle E, Steene-Johannessen J, et al. Monitoring population levels of physical activity and sedentary time in Norway across the lifespan. Scand J Med Sci Sports 2019;29:105–12.doi:10.1111/sms.13314pmid:http://www.ncbi.nlm.nih.gov/pubmed/30276928PubMedGoogle Scholar
  • ↵Loyen A, Clarke-Cornwell AM, Anderssen SA, et al. Sedentary time and physical activity surveillance through accelerometer pooling in four European countries. Sports Med 2017;47:1421–35.doi:10.1007/s40279-016-0658-ypmid:http://www.ncbi.nlm.nih.gov/pubmed/27943147CrossRefPubMedGoogle Scholar
  • ↵Mielke GI, da Silva ICM, Kolbe-Alexander TL, et al. Shifting the physical inactivity curve worldwide by closing the gender gap. Sports Med 2018;48:481–9.doi:10.1007/s40279-017-0754-7pmid:http://www.ncbi.nlm.nih.gov/pubmed/28647914PubMedGoogle Scholar
  • ↵Swain D, Franklin B, Williams P. Cardioprotective benefits of vigorous physical activity: the risk benefit issue. In: The medical roundtable cardiovascular edition. 1, 2020: 167–75.Google Scholar
  • ↵Coen SE, Rosenberg MW, Davidson J. "It's gym, like g-y-m not J-i-m": Exploring the role of place in the gendering of physical activity. Soc Sci Med 2018;196:29–36.doi:10.1016/j.socscimed.2017.10.036pmid:http://www.ncbi.nlm.nih.gov/pubmed/29127850PubMedGoogle Scholar
  • ↵Salvatore J, Marecek J. Gender in the gym: Evaluation concerns as barriers to women’s weight lifting. Sex Roles 2010;63:556–67.doi:10.1007/s11199-010-9800-8CrossRefGoogle Scholar
  • ↵MacIntosh E, Law B. Should I stay or should I go? exploring the decision to join, maintain, or cancel a fitness membership. Manag Sport Leis 2015;20:191–210.doi:10.1080/23750472.2015.1025093Google Scholar
  • ↵Wickham JB, Mullen NJ, Whyte DG, et al. Comparison of energy expenditure and heart rate responses between three commercial group fitness classes. J Sci Med Sport 2017;20:667–71.doi:10.1016/j.jsams.2016.11.012pmid:http://www.ncbi.nlm.nih.gov/pubmed/28185805PubMedGoogle Scholar
  • ↵Hoffmann TC, Maher CG, Briffa T, et al. Prescribing exercise interventions for patients with chronic conditions. CMAJ 2016;188:510–8.doi:10.1503/cmaj.150684pmid:http://www.ncbi.nlm.nih.gov/pubmed/26976965FREE Full TextGoogle Scholar
  • ↵Picorelli AMA, Pereira LSM, Pereira DS, et al. Adherence to exercise programs for older people is influenced by program characteristics and personal factors: a systematic review. J Physiother 2014;60:151–6.doi:10.1016/j.jphys.2014.06.012pmid:http://www.ncbi.nlm.nih.gov/pubmed/25092418PubMedGoogle Scholar
  • ↵Fiuza-Luces C, Santos-Lozano A, Joyner M, et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol 2018;15:731–43.doi:10.1038/s41569-018-0065-1pmid:http://www.ncbi.nlm.nih.gov/pubmed/30115967CrossRefPubMedGoogle Scholar
  • ↵Mozumdar A, Liguori G. Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999-2006. Diabetes Care 2011;34:216–9.doi:10.2337/dc10-0879pmid:http://www.ncbi.nlm.nih.gov/pubmed/20889854Abstract/FREE Full TextGoogle Scholar
  • ↵Anderson E, Durstine JL. Physical activity, exercise, and chronic diseases: a brief review. Sports Med Health Sci 2019;1:3–10.doi:10.1016/j.smhs.2019.08.006Google Scholar
  • ↵Soares-Miranda L, Sandercock G, Vale S, et al. Benefits of achieving vigorous as well as moderate physical activity recommendations: evidence from heart rate complexity and cardiac vagal modulation. J Sports Sci 2011;29:1011–8.doi:10.1080/02640414.2011.568513pmid:http://www.ncbi.nlm.nih.gov/pubmed/21623533CrossRefPubMedWeb of ScienceGoogle Scholar
  • ↵Stamatakis E, Lee I-M, Bennie J, et al. Does strength-promoting exercise confer unique health benefits? A pooled analysis of data on 11 population cohorts with all-cause, cancer, and cardiovascular mortality endpoints. Am J Epidemiol 2018;187:1102–12.doi:10.1093/aje/kwx345pmid:http://www.ncbi.nlm.nih.gov/pubmed/29099919CrossRefPubMedGoogle Scholar
  • ↵Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol 2006;97:141–7.doi:10.1016/j.amjcard.2005.07.130pmid:http://www.ncbi.nlm.nih.gov/pubmed/16377300CrossRefPubMedWeb of ScienceGoogle Scholar
  • ↵Cocca A, Liukkonen J, Mayorga-Vega D, et al. Health-related physical activity levels in Spanish youth and young adults. Percept Mot Skills 2014;118:247–60.doi:10.2466/10.06.PMS.118k16w1pmid:http://www.ncbi.nlm.nih.gov/pubmed/24724525CrossRefPubMedGoogle Scholar
  • ↵Beedie C, Mann S, Domone S. Effects on cardiovascular risk factors of three 48-week community-based exercise interventions. Med Sci Sports Exerc 2016;48.doi:10.1249/01.mss.0000486781.43775.7dGoogle Scholar
  • ↵Sperandei S, Carvalho Vieira M, Reis AC. Adherence to physical activity in an unsupervised setting: the case of lapse and return to practice in a Brazilian fitness center. AJSPO 2019;6:95–108.doi:10.30958/ajspo.6-2-3Google Scholar
  • ↵Sperandei S, Vieira MC, Reis AC. Adherence to physical activity in an unsupervised setting: explanatory variables for high attrition rates among fitness center members. J Sci Med Sport 2016;19:916–20.doi:10.1016/j.jsams.2015.12.522pmid:http://www.ncbi.nlm.nih.gov/pubmed/26874647PubMedGoogle Scholar
  • ↵Moreno-Llamas A, García-Mayor J, De la Cruz-Sánchez E. Physical activity barriers according to social stratification in Europe. Int J Public Health 2020;65:1477–84.doi:10.1007/s00038-020-01488-ypmid:http://www.ncbi.nlm.nih.gov/pubmed/32989480PubMedGoogle Scholar
  • ↵Middelkamp J, van Rooijen M, Wolfhagen P, et al. The effects of a self-efficacy intervention on exercise behavior of fitness Club members in 52 weeks and long-term relationships of Transtheoretical model constructs. J Sports Sci Med 2017;16:163–71.pmid:http://www.ncbi.nlm.nih.gov/pubmed/28630568PubMedGoogle Scholar
  • ↵Steene-Johannessen J, Anderssen SA, van der Ploeg HP, et al. Are self-report measures able to define individuals as physically active or inactive? Med Sci Sports Exerc 2016;48:235–44.doi:10.1249/MSS.0000000000000760pmid:http://www.ncbi.nlm.nih.gov/pubmed/26322556