Clasificación de 4-símplices vacíos y otros politopos reticulares

  1. Iglesias Valiño, Oscar
Supervised by:
  1. Francisco Santos Director

Defence university: Universidad de Cantabria

Fecha de defensa: 12 February 2021

Committee:
  1. Fernando Etayo Gordejuela Chair
  2. Gennadiy Averkov Secretary
  3. Julian Pfeifle Committee member

Type: Thesis

Teseo: 648406 DIALNET lock_openTESEO editor

Abstract

A d-polytope is the convex hull of a finite set of points in R^d. In particular, if a d-polytope is generated by exactly d + 1 points, it is said to be a simplex or a d-simplex. In addition, if we take the points with integer coordinates, the polytope is a lattice polytope. Throughout this thesis, lattice polytopes are studied and, more specifically, two types of these, which are empty lattice polytopes (whose only integer points are its vertices) and hollow polytopes, lattice polytopes that do not have integer points in their interior, that is, all their integer points are in their facets. Hollow polytopes, also empty, appear as the simplest example of lattice polytopes because they have no integer points inside their convex hull. The main result of the thesis is the classification of empty simplices in dimension 4. While cases in dimension 1 and 2 are trivial and the case of dimension 3 has been completed since 1964 with the work of White [Whi64], this work completes this classification in dimension 4. Papers such as Mori, Morrison and Morrison [MMM88] in 1988 manage to describe some families of empty 4-simplices of prime volume in terms of quintuples. Other works, such as Haase and Ziegler [HZ00] in 2000, obtain partial results tor this classification. In particular, this work conjecture a complete list of empty 4-simplices of width greater than two, which is verified in this thesis. With convex geometry tools, geometry of numbers and previous results that rely on the relationship between the width of a polytope and its volume, we are able to to set upper bounds for the volume of hollow 4-simpolices, that we want to classify. With these upper bounds for the volume of the simplices and a lot of computation of these lattice polytopes in dimension 4 we are able to complete the classification, explaining the general method used to describe the families of empty simplices that appear in the classification.