Rainfall and water yield in Macizo del Caroig, Eastern Iberian Peninsulaevent runoff at plot scale during a rare flash flood at the Barranco de Benacancil
- Artemi Cerdà 3
- Agata Novara 4
- Pavel Dlapa 12
- Manuel López Vicente 13
- Xavier Úbeda 14
- Zorica Popovic 10
- Mulatie Mekonnen 9
- Enric Terol 11
- Saeid Janizadeh 1
- Sonia Mbarki 2
- Eduardo Saldanha Vogelmann 5
- Sajjad Hazrati 6
- Srikanta Sannigrahi 7
- Misagh Parhizkar 8
- Antonio Giménez Morera 11
-
1
Tarbiat Modares University
info
-
2
National Research Institute of Rural Engineering, Water and Forests
info
National Research Institute of Rural Engineering, Water and Forests
Ariana, Túnez
-
3
Universitat de València
info
-
4
University of Palermo
info
-
5
Fundação Universidade Federal do Rio Grande
info
-
6
University of Tehran
info
-
7
University College Dublin
info
-
8
University of Guilan
info
-
9
Bahir Dar University
info
-
10
University of Belgrade
info
-
11
Universidad Politécnica de Valencia
info
-
12
Comenius University
info
- 13 Wageningen Environmental Research
-
14
Universitat de Barcelona
info
- Romero Díaz, María Asunción (ed. lit.)
ISSN: 0211-6820, 1697-9540
Year of publication: 2021
Volume: 47
Issue: 1
Pages: 95-119
Type: Article
More publications in: Cuadernos de investigación geográfica: Geographical Research Letters
Abstract
Floods are a consequence of extreme rainfall events. Although surface runoff generation is the origin of discharge, flood research usually focuses on lowlands where the impact is higher. Runoff and sediment delivery at slope and pedon scale receiving much less attention in the effort to understand flood behaviour in time and space. This is especially relevant in areas where, due to climatic and hydrogeological conditions, streams are ephemeral, so-called dry rivers (“wadis”, "ramblas" or “barrancos”) that are widespread throughout the Mediterranean. This paper researches the relationship between water delivery at pedon and slope scale with dry river floods in Macizo del Caroig, Eastern Iberian Peninsula. Plots of 1x1, 1x2, 1x4, and 2x8 m located in the “El Teularet” Soil Erosion and Degradation Research Station were monitored from 2004 to 2014 to measure soil and water delivery. Rainfall and flow at the dry river Barranco de Benacancil were also monitored. Results show that runoff and sediment discharge were concentrated in few events during the 11 years of research. A single flood event was registered in the channel on September 28, 2009, however, the runoff was registered 160 times at the plots. Runoff discharge was dependent on the size of the plots, with larger plots yielding lower runoff discharge per unit area, suggesting short runoff-travel distance and duration. Three rainfall events contributed with 26% of the whole runoff discharge, and five achieved 56% of the runoff. We conclude that the runoff generated at the plot scale is disconnected from the main channel. From a spatial point of view, there is a decrease in runoff coefficient along the slope. From a temporal point of view, the runoff is concentrated in a few rainfall events. These results show that the runoff generated at plot and slope scale does not contribute to the floods except for rainfall events with more than 100 mm day-1. The disconnection of the runoff and sediment delivery is confirmed by the reduction in the runoff delivery at plot scale due to the control of the length of the plot (slope) on the runoff and sediment delivery.
Funding information
Artemi Cerdà thanks the Co-operative Research program from the OECD (Biological Resource Management for Sustainable Agricultural Systems) for its support with the 2016 CRP fellowship (OCDE TAD/CRP JA00088807), POSTFIRE Project (CGL2013-47862-C2-1 and 2-R), and POSTFIRE_CARE Project (CGL2016-75178-C2-2-R) sponsored by the Spanish Ministry of Economy and Competitiveness and AEI/FEDER, UE. This paper was written as a result of the collaboration that was initiated due to the COST ActionES1306: Connecting European Connectivity research and COST CA18135 FIRElinks: Fire in the Earth System. Science and Society. We wish to thank the Department of Geography secretariat team (Nieves Gómez, Nieves Dominguez, and Susana Tomás) for their support for three decades to our research at the Soil Erosion and Degradation Research team (SEDER), with special thanks to the scientific researchers that as visitors from other research teams contributed to theFunders
-
OCDE
- OCDE TAD/CRP JA00088807
- European Cooperation in Science and Technology European Union
-
Ministerio de Economía y Competitividad
Spain
- CGL2013-47862-C2-1
- CGL2016-75178-C2-2 -R
-
European Regional Development Fund
European Union
- CGL2013-47862-C2-1
- CGL2016-75178-C2-2 -R
-
Agencia Estatal de Investigación
Spain
- CGL2016-75178-C2-2 -R
- CGL2013-47862-C2-1
Bibliographic References
- Alpert, P., Ben‐Gai, T., Baharad, A., Benjamini, Y., Yekutieli, D., Colacino, M., Diodato, L., Ramis, C., Homar, V., Romero, R., Michaelides, S., Manes, A. 2020. The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophysical Research Letters 29 (11), 31-1. https://doi.org/10.1029/2001GL013554.
- Bagarello, V., Ferro, V., Keesstra, S., Comino, J.R., Pulido, M., Cerdà, A. 2018. Testing simple scaling in soil erosion processes at plot scale. Catena 167, 171-180. https://doi.org/10.1016/j.catena.2018.04.035.
- Bannari, A., Kadhem, G., El-Battay, A., Hameid, N.A., Rouai, M. 2016. Assessment of land erosion and sediment accumulation caused by runoff after a flash-flooding storm using topographic profiles and spectral indices. Advances in Remote Sensing 5(4), 315-354. https://doi.org/10.4236/ars.2016.54024.
- Bauer, T., Ingram, V., De Jong, W., Arts, B. 2018. The socio-economic impact of extreme precipitation and flooding on forest livelihoods: evidence from the Bolivian Amazon. International Forestry Review 20 (3), 314-331. https://doi.org/10.1505/146554818824063050.
- Beguería, S., López‐Moreno, J.I., Gómez‐Villar, A., Rubio, V., Lana‐Renault, N., García‐Ruiz, J.M. 2006. Fluvial adjustments to soil erosion and plant cover changes in the Central Spanish Pyrenees. Geografiska Annaler: Series A, Physical Geography 88 (3), 177-186. https://doi.org/10.1111/j.1468-0459.2006.00293.x.
- Bhattarai, R., Dutta, D. 2007. Estimation of soil erosion and sediment yield using GIS at catchment scale. Water Resources Management 21(10), 1635-1647. https://doi.org/10.1007/s11269-006-9118-z.
- Bracken, L.J., Croke, J. 2007. The concept of hydrological connectivity and its contribution to understanding runoff‐dominated geomorphic systems. Hydrological Processes 21(13), 1749-1763. https://doi.org/10.1002/hyp.6313.
- Bronstert, A., Vollmer, S., Ihringer, J. 1995. A review of the impact of land consolidation on runoff production and flooding in Germany. Physics and Chemistry of the Earth, 20 (3-4), 321-329.
- Cammeraat, E.L. 2004. Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in southeast Spain. Agriculture, Ecosystems & Environment 104(2), 317-332. https://doi.org/10.1016/j.agee.2004.01.032.
- Cerdà, A., Rodrigo-Comino, J. 2020. Is the hillslope position relevant for runoff and soil loss activation under high rainfall conditions in vineyards? Ecohydrology & Hydrobiology, 20(1), 59-72. https://doi.org/10.1016/j.ecohyd.2019.05.006.
- Cerdà, A., Keesstra, S.D., Rodrigo-Comino, J., Novara, A., Pereira, P., Brevik, E., Giménez-Morera, A., Fernández-Raga, M., Pulido, M., di Primal, S., Jordán, A. 2017. Runoff initiation, soil detachment and connectivity are enhanced as a consequence of vineyards plantations. Journal of Environmental Management 202, 268-275. https://doi.org/10.1016/j.jenvman.2017.07.036.
- Cerdà, A., Rodrigo-Comino, J., Giménez-Morera, A., Keesstra, S.D. 2017. An economic, perception and biophysical approach to the use of oat straw as mulch in Mediterranean rainfed agriculture land. Ecological Engineering 108, 162-171. https://doi.org/10.1016/j.ecoleng.2017.08.028.
- Cerdà, A., Rodrigo-Comino, J., Novara, A., Brevik, E.C., Vaezi, A.R., Pulido, M., Giménez-Morera, A., Keesstra, S.D. 2018. Long-term impact of rainfed agricultural land abandonment on soil erosion in the Western Mediterranean basin. Progress in Physical Geography: Earth and Environment 42(2), 202-219. https://doi.org/10.1177/0309133318758521.
- Cerdà, A., Rodrigo-Comino, J., Yakupoğlu, T., Dindaroğlu, T., Terol, E., Mora-Navarro, G., Arabameri, A., Radziemska, M., Novara, A., Kavian, A., Vaverková, M.D., Abd-Elmabod, S.K., Hammad, H.M., Daliakopoulos, I.N. 2020. Tillage Versus No-Tillage. Soil Properties and Hydrology in an Organic Persimmon Farm in Eastern Iberian Peninsula. Water 12(6), 1539. https://doi.org/10.3390/w12061539.
- Chalise, D., Kumar, L., Kristiansen, P. 2019. Land degradation by soil erosion in Nepal: a review. Soil Systems 3(1), 12. https://doi.org/10.3390/soilsystems3010012.
- Chalise, D., Kumar, L., Sharma, R., Kristiansen, P. 2020. Assessing the impacts of tillage and mulch on soil erosion and corn yield. Agronomy 10(1), 63. https://doi.org/10.3390/agronomy10010063.
- Contreras, F.I., Mastretta, G.M., Piccolo, M.C., Perillo, G.M.E. 2021. Spatio-temporal variability monitoring of the floods in the center-west of the Buenos Aires Province (Argentina) using remote sensing techniques. Geographical Research Letters (Cuadernos de Investigación Geográfica) 47. https://doi.org/10.18172/cig.4477.
- Daliakopoulos, I.N., Tsanis, I.K. 2012. A weather radar data processing module for storm analysis. Hydroinformatics 14 (2), 332-344. https://doi.org/10.2166/hydro.2011.118.
- De Vente, J., Poesen, J. 2005. Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-Science Reviews 71(1-2), 95-125. https://doi.org/10.1016/j.earscirev.2005.02.002.
- Downs, P.W., Thorne, C.R. 2000. Rehabilitation of a lowland river: reconciling flood defence with habitat diversity and geomorphological sustainability. Journal of Environmental Management 58(4), 249-268. https://doi.org/10.1006/jema.2000.0327.
- Dunne, T., Dietrich, W.E. 1980. Experimental investigation of Horton overland flow on tropical hillslopes. 2. Hydraulic characteristics and hillslopes hydrographs. Zeitschrift für Geomorphologie 35, 60-80.
- Geremew, A., Triest, L. 2019. Hydrological connectivity and vegetative dispersal shape clonal and genetic structure of the emergent macrophyte Cyperus papyrus in a tropical highland lake (Lake Tana, Ethiopia). Hydrobiologia 843(1), 13-30. https://doi.org/10.1007/s10750-017-3466-y.
- González-Hidalgo, J.C., Batalla, R.J., Cerda, A. 2013. Catchment size and contribution of the largest daily events to suspended sediment load on a continental scale. Catena 102, 40-45. https://doi.org/10.1016/j.catena.2010.10.011.
- González-Hidalgo, J.C., Batalla, R.J., Cerda, A., de Luis, M. 2012. A regional analysis of the effects of largest events on soil erosion. Catena 95, 85-90. https://doi.org/10.1016/j.catena.2012.03.006.
- González‐Hidalgo, J.C., de Luis, M., Batalla, R.J. 2009. Effects of the largest daily events on total soil erosion by rainwater. An analysis of the USLE database. Earth Surface Processes and Landforms 34 (15), 2070-2077. https://doi.org/10.1002/esp.1892.
- Guhathakurta, P., Sreejith, O.P., Menon, P.A. 2011. Impact of climate change on extreme rainfall events and flood risk in India. Journal of Earth System Science 120 (3), 359.
- Hamilton, L.S. 1987. What are the impacts of Himalayan deforestation on the Ganges-Brahmaputra lowlands and delta? Assumptions and facts. Mountain Research and Development 7 (3), 256-263. https://doi.org/10.2307/3673202 .
- Horton, R.E. 1933. The role of infiltration in the hydrologic cycle. Eos, Transactions American Geophysical Union 14 (1), 446-460.
- Hümann, M., Schüler, G., Müller, C., Schneider, R., Johst, M., Caspari, T. 2011. Identification of runoff processes–The impact of different forest types and soil properties on runoff formation and floods. Journal of Hydrology 409 (3-4), 637-649. https://doi.org/10.1016/j.jhydrol.2011.08.067.
- Jourgholami, M., Labelle, E.R. 2020. Effects of plot length and soil texture on runoff and sediment yield occurring on machine-trafficked soils in a mixed deciduous forest. Annals of Forest Science, 77 (1), 1-11. https://doi.org/10.1007/s13595-020-00938-0.
- Kalantari, Z., Ferreira, C.S.S., Keesstra, S., Destouni, G. 2018. Nature-based solutions for flood-drought risk mitigation in vulnerable urbanizing parts of East-Africa. Current Opinion in Environmental Science & Health 5, 73-78. https://doi.org/10.1016/j.coesh.2018.06.003.
- Keesstra, S.D. 2007. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surface Processes and Landforms 32 (1), 49-65. https://doi.org/10.1002/esp.1360.
- Keesstra, S.D., Van Dam, O., Verstraeten, G.V., Van Huissteden, J. 2009. Changing sediment dynamics due to natural reforestation in the Dragonja catchment, SW Slovenia. Catena, 78 (1), 60-71. https://doi.org/10.1016/j.catena.2009.02.021.
- Keesstra, S., Nunes, J.P., Saco, P., Parsons, T., Poeppl, R., Masselink, R., Cerdà, A. 2018. The way forward: can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of the Total Environment 644, 1557-1572. https://doi.org/10.1016/j.scitotenv.2018.06.342.
- Keesstra, S.D., Davis, J., Masselink, R.H., Casalí, J., Peeters, E.T., Dijksma, R. 2019. Coupling hysteresis analysis with sediment and hydrological connectivity in three agricultural catchments in Navarre, Spain. Journal of Soils and Sediments 19 (3), 1598-1612. https://doi.org/10.1007/s11368-018-02223-0.
- Kirkby, M.J. 2010. Distance, time and scale in soil erosion processes. Earth Surface Processes and Landforms, 35 (13), 1621-1623. https://doi.org/10.1002/esp.2063.
- Langhans, C., Diels, J., Clymans, W., Van den Putte, A., Govers, G. 2019. Scale effects of runoff generation under reduced and conventional tillage. Catena 176, 1-13. https://doi.org/10.1016/j.catena.2018.12.031.
- Lasanta, T., Arnáez, J., Nadal-Romero, E. 2019. Soil degradation, restoration and management in abandoned and afforested lands. In: P. Pereira (Ed.). Advances in Chemical Pollution, Environmental Management and Protection: Soil Degradation, Restoration and Management in a Global Change Context. Elsevier, pp. 71-116. https://doi.org/10.1016/bs.apmp.2019.07.002.
- López-Bermúdez, F., Romero-Díaz, A. 1993. Génesis y consecuencias erosivas de las lluvias de alta intensidad en la región Mediterránea. Geographical Research Letters (Cuadernos de Investigación Geográfica) 18-19, 7-28. https://doi.org/10.18172/cig.1000.
- López-Bermúdez, F., Romero-Díaz, A., Martínez-Fernández, J. 1998. Vegetation and soil erosion under semi-arid Mediterranean climate: a case study from Murcia (Spain). Geomorphology 24, 51-58. https://doi.org/10.1016/S0169-555X(97)00100-1.
- López-Vicente, M., Navas, A. 2012. A new distributed rainfall runoff (DR2) model based on soil saturation and runoff cumulative processes. Agricultural Water Management 104, 128-141. https://doi.org/10.1016/j.agwat.2011.12.007.
- López‐Moreno, J.I., Vicente‐Serrano, S.M., Gimeno, L., Nieto, R. 2009. Stability of the seasonal distribution of precipitation in the Mediterranean region: Observations since 1950 and projections for the 21st century. Geophysical Research Letters 36 (10). https://doi.org/10.1029/2009GL037956.
- Luo, J., Zheng, Z., Li, T., He, S. 2020. Temporal variations in runoff and sediment yield associated with soil surface roughness under different rainfall patterns. Geomorphology 349, 106915. https://doi.org/10.1016/j.geomorph.2019. 106915.
- Martin, P. 1999. Reducing flood risk from sediment-laden agricultural runoff using intercrop management techniques in northern France. Soil and Tillage Research 52 (3-4), 233-245. https://doi.org/10.1016/S0167-1987(99)00084-7.
- Masselink, R.J., Heckmann, T., Temme, A.J., Anders, N.S., Gooren, H.P., Keesstra, S.D. 2017. A network theory approach for a better understanding of overland flow connectivity. Hydrological Processes 31 (1), 207-220. https://doi.org/10.1002/hyp.10993.
- Mathbout, S., Lopez-Bustins, J.A., Royé, D., Martin-Vide, J., Bech, J., Rodrigo, F.S. 2018. Observed changes in daily precipitation extremes at annual timescale over the eastern Mediterranean during 1961–2012. Pure and Applied Geophysics 175 (11), 3875-3890. https://doi.org/10.1007/s00024-017-1695-7.
- Moreno‐de las Heras, M., Nicolau, J.M., Merino‐Martín, L., Wilcox, B.P. 2010. Plot‐scale effects on runoff and erosion along a slope degradation gradient. Water Resources Research 46 (4). https://doi.org/10.1029/2009WR007875.
- Nadal‐Romero, E., Cortesi, N., González‐Hidalgo, J.C. 2014. Weather types, runoff and sediment yield in a Mediterranean mountain landscape. Earth Surface Processes and Landforms, 39 (4), 427-437. https://doi.org/10.1002/esp.3451.
- Onda, Y., Gomi, T., Mizugaki, S., Nonoda, T., Sidle, R. C. 2010. An overview of the field and modelling studies on the effects of forest devastation on flooding and environmental issues. Hydrological Processes 24 (5), 527-534. https://doi.org/10.1002/hyp.7548.
- Parida, B.R., Behera, S.N., Bakimchandra, O., Pandey, A.C., Singh, N. 2017. Evaluation of satellite-derived rainfall estimates for an extreme rainfall event over Uttarakhand, Western Himalayas. Hydrology 4 (2), 22. https://doi.org/10.3390/hydrology4020022.
- Parsons, A.J., Brazier, R.E., Wainwright, J., Powell, D.M. 2006. Scale relationships in hillslope runoff and erosion. Earth Surface Processes and Landforms 31(11), 1384-1393. https://doi.org/10.1002/esp.1345.
- Peña-Angulo, D., Vicente-Serrano, S.M., Domínguez-Castro, F., Murphy, C., Reig, F., Tramblay, Y., Trigo, R.M., Luna, M.Y., Turco, M., Noguera, I., Aznárez-Balta, M., García-Herrera, R., Tomas-Burguera, M., El Kenawy, A. 2020. Long-term precipitation in Southwestern Europe reveals no clear trend attributable to anthropogenic forcing. Environmental Research Letters 15 (9), 094070.
- Pisabarro, A. 2020. Snow cover as a morphogenic agent determining ground climate, landforms and runoff in the Valdecebollas massif, Cantabrian Mountains. Cuadernos de Investigación Geográfica 46 (1), 81-102. https://doi.org/10.18172/cig.3823.
- Poesen, J.W., Hooke, J.M. 1997. Erosion, flooding and channel management in Mediterranean environments of southern Europe. Progress in Physical Geography 21 (2), 157-199. https://doi.org/10.1177/030913339702100201.
- Ribes, A., Thao, S., Vautard, R., Dubuisson, B., Somot, S., Colin, J., Planton, S., Soubeyroux, J.M. 2019. Observed increase in extreme daily rainfall in the French Mediterranean. Climate Dynamics 52 (1-2), 1095-1114. https://doi.org/10.1007/s00382-018-4179-2.
- Robinson, D.A., Blackman, J.D. 1990. Soil erosion and flooding: Consequences on land use policy and agricultural practice on the South Downs, East Sussex, UK. Land Use Policy 7 (1), 41-52. https://doi.org/10.1016/0264-8377(90)90053-2.
- Rodrigo Comino, J., Keesstra, S.D., Cerdà, A. 2018a. Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surface Processes and Landforms 43 (10), 2193-2206. https://doi.org/10.1002/esp.4385.
- Rodrigo-Comino, J., Keesstra, S., Cerdà, A. 2018b. Soil Erosion as an Environmental Concern in Vineyards: The Case Study of Celler del Roure, Eastern Spain, by Means of Rainfall Simulation Experiments. Beverages, 4 (2), 31. https://doi.org/10.3390/beverages4020031.
- Rodrigo-Comino, J., Senciales-González, J.M., Terol, E., Mora-Navarro, G., Gyasi-Agyei, Y., Cerdà, A. 2020. Impacts of Weather Types on Soil Erosion Rates in Vineyards at “Celler del Roure” Experimental Research in Eastern Spain. Atmosphere 11 (6), 551. https://doi.org/10.3390/atmos11060551.
- Romero-Díaz, A., López Bermúdez, F., Belmonte Serrato, F., Barbera, G.G. 1998. Erosión y escorrentía en el campo experimental de "El Ardal" (Murcia). Nueve años de experiencias. Papeles de Geografía 27, 129-144.
- Romero-Díaz, A., Ruiz-Sinoga, J.D., Robledano-Aymerich, F., Brevik, E.C., Cerdà, A. 2017. Ecosystem responses to land abandonment in Western Mediterranean Mountains. Catena 149, 824-835. https://doi.org/10.1016/j.catena.2016.08.013.
- Romero‐Díaz, A., Belmonte‐Serrato, F., Ruiz‐Sinoga, J.D. 2010. The geomorphic impact of afforestations on soil erosion in Southeast Spain. Land Degradation & Development 21 (2), 188-195. https://doi.org/10.1002/ldr.946.
- Ruiz-Sinoga, J.D., Díaz, A.R. 2010. Soil degradation factors along a Mediterranean pluviometric gradient in Southern Spain. Geomorphology, 118 (3-4), 359-368. https://doi.org/10.1016/j.geomorph.2010.02.003.
- Saco, P.M., Rodríguez, J.F., Moreno-de las Heras, M., Keesstra, S., Azadi, S., Sandi, S., Baartmane, J., Rodrigo-Comino, J., Rossi, M. J. 2020. Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. Catena 186, 104354. https://doi.org/10.1016/j.catena.2019.104354.
- Saghafian, B., Farazjoo, H., Bozorgy, B., Yazdandoost, F. 2008. Flood intensification due to changes in land use. Water Resources Management 22 (8), 1051-1067. https://doi.org/10.1007/s11269-007-9210-z.
- Salesa, D., Cerdà, A. 2019. Four-year soil erosion rates in a running-mountain trail in eastern Iberian Peninsula. Geographical Research Letters (Cuadernos de Investigación Geográfica) 45, 309-331. https://doi.org/10.18172/cig.3826.
- Santos, J.C.N.D., Andrade, E.M.D., Medeiros, P.H.A., Guerreiro, M.J.S., Palacio, H.A.D.Q. 2017. Land use impact on soil erosion at different scales in the Brazilian semi-arid. Revista Ciência Agronômica 48 (2), 251-260. https://doi.org/10.5935/1806-6690.20170029.
- Sarris, D., Christodoulakis, D., Koerner, C. 2007. Recent decline in precipitation and tree growth in the eastern Mediterranean. Global Change Biology 13 (6), 1187-1200. https://doi.org/10.1111/j.1365-2486.2007.01348.x.
- Serrano‐Notivoli, R., Beguería, S., Saz, M.A., de Luis, M. 2018. Recent trends reveal decreasing intensity of daily precipitation in Spain. International Journal of Climatology 38 (11), 4211-4224. https://doi.org/10.1002/joc.5562.
- Sibley, A. 2010. Analysis of extreme rainfall and flooding in Cumbria 18-20 November 2009. Weather 65 (11), 287-292. https://doi.org/10.1002/wea.672.
- Smets, T., Poesen, J., Knapen, A. 2008. Spatial scale effects on the effectiveness of organic mulches in reducing soil erosion by water. Earth-Science Reviews 89 (1-2), 1-12. https://doi.org/10.1016/j.earscirev.2008.04.001.
- Smith, J.A., Baeck, M.L., Ntelekos, A.A., Villarini, G., Steiner, M. 2011. Extreme rainfall and flooding from orographic thunderstorms in the central Appalachians. Water Resources Research 47 (4). https://doi.org/10.1029/2010WR010190.
- Smith, J.A., Baeck, M.L., Zhang, Y., Doswell III, C.A. 2001. Extreme rainfall and flooding from supercell thunderstorms. Journal of Hydrometeorology 2 (5), 469-489. https://doi.org/10.1175/1525-7541(2001)002<0469:ERAFFS>2.0.CO;2.
- Takken, I., Jetten, V., Govers, G., Nachtergaele, J., Steegen, A. 2001. The effect of tillage-induced roughness on runoff and erosion patterns. Geomorphology 37 (1-2), 1-14. https://doi.org/10.1016/S0169-555X(00)00059-3.
- Tullberg, J.N., Ziebarth, P.J., Li, Y. 2001. Tillage and traffic effects on runoff. Soil Research 39 (2), 249-257. https://doi.org/10.1071/SR00019.
- Vicente-Serrano, S.M., González-Hidalgo, J.C., de Luis, M., Raventós, J. 2004. Drought patterns in the Mediterranean area: the Valencia region (eastern Spain). Climate Research 26 (1), 5-15. https://doi.org/10.3354/cr026005.
- Wang, L., Dalabay, N., Lu, P., Wu, F. 2017. Effects of tillage practices and slope on runoff and erosion of soil from the Loess Plateau, China, subjected to simulated rainfall. Soil and Tillage Research 166, 147-156. https://doi.org/10.1016/j.still.2016.09.007.
- Wilkinson, M.E., Quinn, P.F., Welton, P. 2010. Runoff management during the September 2008 floods in the Belford catchment, Northumberland. Journal of Flood Risk Management 3 (4), 285-295. https://doi.org/10.1111/j.1753-318X.2010.01078.x.
- Wu, J., Liu, H., Wei, G., Song, T., Zhang, C., Zhou, H. 2019. Flash flood forecasting using support vector regression model in a small mountainous catchment. Water 11 (7), 1327. https://doi.org/10.3390/w11071327.
- Yousefi, S., Mirzaee, S., Keesstra, S., Surian, N., Pourghasemi, H. R., Zakizadeh, H. R., Tabibian, S. 2018. Effects of an extreme flood on river morphology (case study: Karoon River, Iran). Geomorphology 304, 30-39. https://doi.org/10.1016/j.geomorph.2017.12.034.
- Yousefi, S., Pourghasemi, H.R., Rahmati, O., Keesstra, S., Emami, S. N., Hooke, J. 2020. Geomorphological change detection of an urban meander loop caused by an extreme flood using remote sensing and bathymetry measurements (a case study of Karoon River, Iran). Journal of Hydrology, 125712. https://doi.org/10.1016/j.jhydrol.2020.125712.
- Yu, F., Harbor, J.M. 2019. The effects of topographic depressions on multiscale overland flow connectivity: A high‐resolution spatiotemporal pattern analysis approach based on connectivity statistics. Hydrological Processes 33 (10), 1403-1419. https://doi.org/10.1016/j.jhydrol.2020.125712.
- Zhang, X., Lin, P., Chen, H., Yan, R., Zhang, J., Yu, Y., Liu, E., Yang, Y., Zhao, W., Lv, D., Lei, S., Liu, B., Yang, X., Li, Z. 2018. Understanding land use and cover change impacts on run‐off and sediment load at flood events on the Loess Plateau, China. Hydrological Processes 32 (4), 576-589. https://doi.org/10.1002/hyp.11444.
- Zhao, L., Hou, R., Wu, F., Keesstra, S. 2018. Effect of soil surface roughness on infiltration water, ponding and runoff on tilled soils under rainfall simulation experiments. Soil and Tillage Research 179, 47-53. https://doi.org/10.1016/j.still.2018.01.009.
- Ziegler, A.D., Sutherland, R.A., Giambelluca, T.W. 2001. Acceleration of Horton overland flow and erosion by footpaths in an upland agricultural watershed in northern Thailand. Geomorphology 41 (4), 249-262. https://doi.org/10.1016/S0169-555X(01)00054-X.