Aplicación de Deep Learning al aprendizaje de modelos en robótica cognitiva

  1. Francisco Bellas-Bouza
  2. Jose Becerra-Permuy
  3. Ariel Rodríguez-Jiménez
  4. Esteban Arias-Méndez
Journal:
Tecnología en Marcha

ISSN: 0379-3982 2215-3241

Year of publication: 2020

Issue Title: Movilidad Estudiantil 7

Volume: 33

Issue: 6

Pages: 92-104

Type: Article

DOI: 10.18845/TM.V33I6.5171 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Tecnología en Marcha

Sustainable development goals

Abstract

The kind of training used for an artificial neural network will depend on factors such as: available data, training time, hardware resources, etc. The trainings can be online and offline. In the current article we experimented with online trainings on a robot whose main characteristic is the usage of a Cognitive Darwinist Mechanism to survive.The robot learns in real-time. It has deep artificial neural networks to predict actions, it’s trained using the least amount of storage and the training time has to be as fast as possible; keeping high confidence in the artificial neural network.The experimental trainings are: Online Deep Learning, Online Deep Learning with memory and Online Mini-Batch Deep Learning with memory

Bibliographic References

  • Arrabales, R. (2007). Robótica Cognitiva (1era edición) [Online]. Disponible: http://www.conscious-robots.com/es/2007/08/21/robotica-cognitiva/
  • Bottou, U. (2010). Large-Scale Machine Learning with Stochastic Gradient Descent (1era edición) [Online]. Disponible: https://leon.bottou.org/publications/pdf/compstat-2010.pdf
  • Brownlee, J. (2017). A Gentle Introduction to Mini-Batch Gradient Descent and How to Configure Batch Size (1era edición) [Online]. Disponible: https://machinelearningmastery.com/gentle-introduction-mini-batch-gra-dient-descent-configure-batch-size/
  • Crowford, C. (2016). An introduction to deep learning (1era edición) [Online]. Disponible: https://blog.algorith-mia.com/introduction-to-deep-learning/
  • Duchi, S., Hazan, E. y Singer, Y. (2011). Adaptive Subgradient Method for Online Learning and Stochastic Optimization (1era edición) [Online]. Disponible: http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
  • F. Bellas, “MDB mecanismo cognitivo darwinista para agentes autónomos”, Disertación doctoral, departamen-to de computación, Universidade da Coruña, A Coruña, España, 2003.
  • Guizzo, B. y Ackerman, E. (2018, setiembre 18). How Rethink Robotics Built its New Baxter Robot Worker (1era edición) [Online]. Available: https://spectrum.ieee.org/robotics/industrial-robots/rethink-robotics-baxter-robot-factory-worker
  • Kingma, D., y Lei J. (2015). ADAM: A method for stochastic optimization (1era edición) [Online]. Disponible: https://arxiv.org/pdf/1412.6980.pdf
  • Poggio, T., Voinea, S., y Rosasco, L. (2018). Online learning, stability and stochastic gradient descent (1era edición) [Online]. Disponible: https://arxiv.org/pdf/1105.4701.pdf
  • Sahoo, D., Pham, Q., Lu J., y C.H S. (2017). Online Deep Learning: Learning Deep Neural Networks on the Fly (1era edición) [Online]. Disponible: https://arxiv.org/pdf/1711.03705.pdf
  • Stanley, K. y Miikkulainen, R. (2002). Evolving Neural Networks Through Augmenting Topologies (1era edición) [Online]. Disponible: http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf[
  • Zulkifli, H. (2018). Understanding Learning Rates and How It Improves Performance in Deep Learning (1era edición) [Online]. Disponible: https://towardsdatascience.com/understanding-learning-rates-and-how-it-impro-ves-performance-in-deep-learning-d0d4059c1c10