Estudio comparativo de la nitrocarburación de los aceros AISI 4340 y AISI 347 mediante el proceso Tenifer-QPQ®

  1. Bellas, Leornado 1
  2. Castro, Gemma 2
  3. Mera, Laura 2
  4. Mier, José L. 3
  5. García, Ana 3
  6. Varela, Angel 3
  1. 1 Grupo Cetus
  2. 2 Asociación de Investigación Metalúrgica del Noroeste (AIMEN)
  3. 3 Escola Politécnica Superior de Ferrol, Universidade da Coruña
Journal:
Revista de metalurgia

ISSN: 0034-8570

Year of publication: 2019

Volume: 55

Issue: 1

Pages: 136

Type: Article

DOI: 10.3989/REVMETALM.136 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista de metalurgia

Abstract

This paper studies the microstructural and tribological differences of layers formed during the ferritic nitrocarburizing of AISI 4340 alloy steel and AISI 347 stabilized stainless steel. The samples were exposed to different times of immersion in a nitrocarburizing bath (60, 75, 90, 105 and 120 min) at 580 °C. Subsequently, they were subjected to an oxidation process at 480 °C in order to form a Fe3O4 layer. Surface microstructural studies were carried out by SEM-EDS and x-ray diffraction (XRD). Wear and friction coefficient of nitrocarburized samples and non-treated samples were studied by pin-on-disk test. The results show two well-differentiated zones in AISI 4340 steel: an outer oxides layer, a white layer or compound layer and a diffusion zone. However, the compound layer was not found in AISI 347 steel. In both steels, the specific wear coefficient (k) of nitrocarburated samples is about thirty times lower than the reference samples.

Bibliographic References

  • Archard, J.F. (2004). Contact and rubbing of flat surface. J. Appl. Phys. 24 (8), 981-988. https://doi.org/10.1063/1.1721448
  • Brühl, S.P., Cabo, A., Tuckart, W., Prieto, G. (2016). Tribological behaviour of nitrided and nitrocarburized carbon steel used to produce engine parts. Ind. Lubr. Tribol. 68 (1), 125-133. https://doi.org/10.1108/ILT-07-2015-0101
  • Chang, C.N., Chen, F.S. (2003). Wear resistance evaluation of plasma nitrocarburized AISI 316L stainless steel. Mater. Chem. Phys. 82 (2), 281-287. https://doi.org/10.1016/S0254-0584(03)00234-7
  • Dong, H. (2010). S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys. Int. Mater. Rev. 55 (2), 65-98. https://doi.org/10.1179/095066009X12572530170589
  • Fattah, M., Mahboubi, F. (2010). Comparison of ferritic and austenitic plasma nitriding and nitrocarburizing behavior of AISI 4140 low alloy steel. Mater. Design 31 (8), 3915- 3921. https://doi.org/10.1016/j.matdes.2010.03.008
  • Flodström, I. (2012). Nitrocarburizing and High Temperature Nitriding of Steels in Bearing Applications. Master of Science Thesis, Department of Materials and Manufacturing Technology, Chalmers University of Technology, Göteborg, Sweden.
  • Funatani, K. (2004). Low-Temperature Salt Bath Nitriding of Steels. Met. Sci. Heat Treat. 46 (7-8), 277-281. https://doi.org/10.1023/B:MSAT.0000048834.48163.2e
  • Karl, A., Beamer, C. (2016). Applications and Design of Low Temperature Surface Hardened Stainless Steel Components in Automotive Applications. SAE Int. J. Mater. Manuf. 9 (3), 679-684. https://doi.org/10.4271/2016-01-0425
  • García, A., Vargas, G., López, J. (2018). Surface microstructural evolution of AISI 304 L stainless steel oxy-nitrocarburized in a cyanide-free salt bath and its potential application in solar collectors. Surf. Coat. Tech. 353, 190-198. https://doi.org/10.1016/j.surfcoat.2018.08.078
  • Li, G., Peng, Q., Li, C., Wang, Y., Gao, J., Chen, S., Wang, J., Shen, B. (2008a). Microstructure analysis of 304L austenitic stainless steel by QPQ complex salt bath treatment. Mater. Charact. 59 (9), 1359-1363. https://doi.org/10.1016/j.matchar.2007.09.011
  • Li, G., Wang, J., Peng, Q., Li, C., Wang, Y., Shen, B. (2008b). Influence of salt bath nitrocarburizing and post-oxidation process on surface microstructure evolution of 17-4PH stainless steel. J. Mater. Process. Tech. 207, 187-192. https://doi.org/10.1016/j.jmatprotec.2007.12.082
  • Maru?i?, K., Otma?i?, H., Landek, D., Cajner, F., Stupni?ek- Lisac, E. (2006). Modification of carbon steel surface by the Tenifer® process of nitrocarburizing and post-oxidation. Surf. Coat. Tech. 201 (6), 3415-3421. https://doi.org/10.1016/j.surfcoat.2006.07.231
  • Mittemeijer, E.J. (2013). Fundamentals of Nitriding and Nitrocarburizing. In Steel Heat Treating Fundamentals and Processe. Dossett, J. and Totten, G.E (Editors), Volume 4A, ASM Handbook, ASM International, Materials Park (Ohio), pp. 619-646. https://doi.org/10.31399/asm.hb.v04a.a0005818
  • Schneider, R.S.E. (2014). Austenitic nitriding and nitrocarburizing of steels. In Thermochemical Surface Engineering of Steels: Improving Materials Performance. Mittemeijer, E.J., Somers, M.A.J (Eds.), Elsevier, Amsterdam, pp. 373-400. https://doi.org/10.1533/9780857096524.3.373
  • Wang, J., Lin, Y., Zhang, Q, Zeng, D., Fan, H. (2014). Effect of treatment time on the microstructure of austenitic stainless steel during low-temperature liquid nitrocarburizing. Metall. Mater. Trans. A 45 (10), 4525-4534. https://doi.org/10.1007/s11661-014-2418-7
  • Wu, D., Ge, Y., Kahn, H., Ernst, F., Heuer, A.H. (2015). Diffusion profiles after nitrocarburizing austenitic stainless steel. Surf. Coat. Tech. 279, 180-185. https://doi.org/10.1016/j.surfcoat.2015.08.048