Modelos de dinámicas de la opinión. Una revisión de la literatura

  1. Tena-Sánchez, Jordi 1
  2. León-Medina, Francisco José 2
  1. 1 Universitat Autònoma de Barcelona, España
  2. 2 Universitat de Girona, España
Revista:
Revista internacional de sociología

ISSN: 0034-9712

Año de publicación: 2019

Volumen: 77

Número: 2

Tipo: Artículo

DOI: 10.3989/RIS.2019.77.2.18.049 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista internacional de sociología

Resumen

El estudio de la opinión pública está girando, en los últimos años, del tradicional enfoque descriptivo con fines informativos y de asesoramiento a un nuevo enfoque explicativo y generativista. Este nuevo enfoque se ha centrado en la construcción y análisis de modelos en los que las interacciones locales, microscópicas, generan las regularidades macroscópicas de la opinión pública. La fertilidad de este nuevo enfoque se está traduciendo en un ritmo de publicaciones que puede llegar a ser abrumador. En este trabajo presentamos una revisión actualizada de la literatura sobre los modelos de dinámicas de la opinión. Se presentan los principales modelos y sus extensiones, organizado la exposición alrededor de diez ejes de debate que configuran el contenido de cada aportación. El artículo ofrece también algunas reflexiones sobre los principales desafíos que tienen ante sí los científicos sociales interesados en el estudio de las dinámicas de la opinión.

Información de financiación

El presente trabajo se ha beneficiado de la concesión de un proyecto del Ministerio de Economía y Competitividad (MINECO), en el marco del Plan Nacional de I+D+i (ref. CSO2015-64740-R.), así como de un proyecto de la Escola d’Administració Pública de Catalunya de la Generalitat de Catalunya (ref. 2018 EAPC000014).

Financiadores

Referencias bibliográficas

  • Abelson, R. P. 1964. “Mathematical Models of the Distribution of Attitudes Under Controversy”. Pp. 142-160 en Contributions to Mathematical Psychology, editado por N. Frederiksen y H. Gulliksen. New York: Holt, Rinehart, and Winston.
  • Acemo?lu, D., G. Como, F. Fagnani y A. Ozdaglar. 2013. “Opinion fluctuations and disagreement in social networks”, Mathematics of Operations Research 38(1): 127.
  • Altafini, C. 2013. “Consensus problems on networks with antagonistic interactions”, IEEE Transactions on Automatic Control 58(4): 935-946.
  • Axelrod, R. 1997. “The dissemination of culture: A model with local convergence and global polarization”, Journal of conflict resolution 41(2): 203-226
  • Baker, G. A. y J. P. Hague. 2008. “Rise of the centrist: from binary to continuous opinion dynamics”, International Journal of Modern Physics C 19(09): 1459-1475.
  • Baldassarri, D. y P. Bearman. 2007. “Dynamics of political polarization”, American Sociological Review 72(5): 784- 811. h
  • Balenzuela P., J.P. Pinasco y V. Semeshenko. 2015. “The Undecided Have the Key: Interaction-Driven Opinion Dynamics in a Three State Model”, PLoS ONE 10(10): e0139572.
  • Bartolozzi, M., D. B. Leinweber y A. W. Thomas. 2005. “Stochastic opinion formation in scale-free networks”, Physical Review E 72: 046113 https://doi.org/10.1103/ PhysRevE.72.046113
  • Barth, V. 2006. “A model of opinion dynamics among firms”, en Potentials of Complexity Science for Business, Government, and the Media, editado por D. Helbing. Budapest: Collegium Budapest.
  • Battiston, F., A. Cairoli, V. Nicosia, A. Baule y V. Latora. 2016. “Interplay between consensus and coherence in a model of interacting opinions”, Physica D: Nonlinear Phenomena, 323: 12-19.
  • Behera, L. y F. Schweitzer. 2003. “On Spatial Consensus Formation: Is the Sznajd Model Different from a Voter Model?”, International Journal of Modern Physics C 14(10): 1331-1354.
  • Bernardes, A.T., U.M.S. Costa, A.D. Araujo y D. Stauffer. 2001. Damage spreading, coarsening dynamics and distribution of political votes in Sznajd model on square lattice. International Journal of Modern Physics C, 12(02), pp.159-167.
  • Bernardes, A.T., D. Stauffer y J. Kertész. 2002. Election results and the Sznajd model on Barabasi network. The European Physical Journal B-Condensed Matter and Complex Systems, 25(1), pp.123-127.
  • Bernheim, B.D. 1994. “A Theory of Conformity”, Journal of Political Economy 102(5): 841-877.
  • Berger, R.L. 1981. “A necessary and sufficient condition for reaching a consensus using DeGroot’s method”, Journal of the American Statistical Association 76(374): 415- 418.
  • Buechel, B., T. Hellmann y S. Klößner. 2015. “Opinion dynamics and wisdom under conformity”, Journal of Economic Dynamics and Control 52: 240-257.
  • Cao, Z., M. Yang, X. Qu y X. Yang. 2012. “Rebels lead to the doctrine of the mean: opinion dynamic in a heterogeneous DeGroot model”, arXiv preprint arXiv:1204.0161. https://arxiv.org/abs/1204.0161
  • Castellano, C., S. Fortunato y V. Loreto. 2009. “Statistical physics of social dynamics”, Reviews of modern physics, 81(2): 591-646.
  • Chacoma, A. y D. H. Zanette. 2015. “Opinion Formation by Social Influence: From Experiments to Modeling”, PLoS ONE 10(10): e0140406.
  • Clifford, P. y A. Sudbury. 1973. “A model for spatial conflict”, Biometrika 60(3): 581588.
  • Crokidakis, N. y P. M. C. De Oliveira. 2011. “The Sznajd model with limited persuasion: competition between high-reputation and hesitant agents”, Journal of Statistical Mechanics: Theory and Experiment, 2011(11): P11004.
  • Dall’Asta, L. y C. Castellano. 2007. “Effective surface-tension in the noise-reduced voter model”, EPL (Europhysics Letters) 77(6): 60005.
  • Dandekar, P., A. Goel y D. T. Lee. 2013. “Biased assimilation, homophily, and the dynamics of polarization”, Proceedings of the National Academy of Sciences 110(15): 5791-5796.
  • Daniel, G., M. Arce y T. Sandler. 2003. “An evolutionary game approach to fundamentalism and conflict”, Journal of Institutional and Theoretical Economics JITE 159(1): 132-154.
  • Deffuant, G., D. Neau, F. Amblard y G. Weisbuch. 2000. “Mixing beliefs among interacting agents”, Advances in Complex Systems 3(01n04): 87-98.
  • Duggins, P. 2017. “A psychologically-motivated model of opinion change with applications to American politics”, Journal of Artificial Societies and Social Simulation 20(1): 13.
  • Eger, S. 2013. “Opinion dynamics under opposition”, arXiv preprint arXiv:1306.3134.
  • Elgazzar, A. S. 2003. “Applications of small-world networks to some socio-economic systems”, Physica A: Statistical Mechanics and its Applications 324(1-2): 402407.
  • Elster, J. 2007. Explaining social behavior: More nuts and bolts for the social sciences. Cambridge: Cambridge University Press.
  • Flache, A. y M. Mäs. 2008. “How to get the timing right. A computational model of the effects of the timing of contacts on team cohesion in demographically diverse teams”, Computational and Mathematical Organization Theory 14(1): 23-51.
  • Flache, A., M. Mäs, T. Feliciani, E. Chattoe-Brown, G. Deffuant, S. Huet y J. Lorenz. 2017. “Models of Social Influence: Towards the Next Frontiers”, Journal of Artificial Societies & Social Simulation, 20(4).
  • Fortunato, S. 2004. “Universality of the threshold for complete consensus for the opinion dynamics of Defuant et al”, International Journal of Modern Physic C 15(09): 1301- 1307.
  • Fortunato, S. 2005. “The Sznajd consensus model with continuous opinions”, International Journal of Modern Physics C 16(01): 17-24.
  • Fortunato, S., V. Latora, A. Pluchino y A. Rapisarda. 2005. “Vector opinion dynamics in a bounded confidence consensus model”, Interational Journal of Modern Physics C 16(10): 1535-1551.
  • Fortunato, S. y D. Stauffer. 2006. “Computer simulations of opinions and their reactions to extreme events”. Pp. 233-257 en Extreme events in nature and society, editado por Sergio Albeverio, S., Jentsch, V. y H. Kantz. Berlin, Heidelberg: Springer.
  • French, J. R. P. Jr. 1956. “A formal theory of social power”, Psychological Review 63(3): 181-194.
  • Friedkin, N.E. 2015. “The problem of social control and coordination of complex systems in sociology: A look at the community cleavage problem”, IEEE Control Systems 35(3): 40-51.
  • Galam, S. 2002. “Minority opinion spreading in random geometry”, The European Physical Journal B, 25(4):403- 406.
  • Galam, S. 2004. “Contrarian deterministic effects on opinion dynamics: ‘the hung elections scenario’”. Physica A 333: 453-460.
  • Galam, S. 2008. “Sociophysics: A review of Galam models”, International Journal of Modern Physics C 19(03): 409- 440.
  • Galam, S., Y. Gefen, e Y. Shapir. 1982. “Sociophysics: A new approach of sociological collective behaviour. I. meanbehaviour description of a strike”, Journal of Mathematical Sociology 9(1): 1-13.
  • Galam, S. y S. Moscovici. 1991. “Towards a theory of collective phenomena: Consensus and attitude changes in groups”, European Journal of Social Psychology 21(1): 49-74.
  • Galam, S. y M. A. Javarone. 2016. “Modeling radicalization phenomena in heterogeneous populations”, PLoS ONE 11(5): e0155407.
  • García-Valdecasas, J. I. 2013. “Grupos moderados y tolerantes en la polarización política de las redes sociales”, Revista Española de Investigaciones Sociológicas 142(1): 25-44.
  • Gargiulo, F. e Y. Gandica. 2017. “The role of homophily in the emergence of opinion controversies”, Journal of Artificial Societies and Social Simulation 20(3):8.
  • Gekle, S., L. Peliti y S. Galam. 2005. “Opinion dynamics in a three-choice system”, The European Physical Journal B - Condensed Matter and Complex Systems B 45: 569-575.
  • Gil, S. y D. H. Zanette. 2006. “Coevolution of agents and networks: Opinion spreading and community disconnection”, Physics Letters A 356(2): 89-94.
  • Gilbert, N. Troitzsch, K. 2005. Simulation for the social scientist. McGraw-Hill Education (UK).
  • Ginkel, J. y A. Smith. 1999. “So you say you want a revolution: A game theoretic explanation of revolution in repressive regimes”, Journal of Conflict Resolution 43(3): 291- 316.
  • González-Avella, J. C., Eguíluz, V. M., Cosenza, M. G., Klemm, K., J. Herrera y M. San Miguel. 2006. “Local versus global interactions in nonequilibrium transitions: A model of social dynamics”, Physical Review E 73(4): 046119.
  • González-Avella, J. C., Cosenza, M. G., Klemm, K., V.M. Eguíluz y M. San Miguel. 2007. “Information feedback and mass media effects in cultural dynamics”, Journal of Artificial Societies and Social Simulation 10(39)1
  • .
  • González-Avella, J. C., M.G. Cosenza y M. San Miguel. 2012. “A model for cross-cultural reciprocal interactions through mass media”, PloSone 7(12): e51035.
  • Grabowsky, A. y R. A. Kosinsky. 2006. “Ising-based model of opinion formation in a complex network of interpersonal interactions”, Physica A 361: 651-664.
  • Groot, M.H. de 1974. “Reaching consensus”, Journal of American Statistical Association 69: 118-121.
  • Halu, A., K. Zhao, A. Baronchelli y G. Bianconi. 2013. “Connect and win: The role of social networks in political elections”, EPL (Europhysics Letters) 102(1): 16002.
  • Hedström, P. 2005. Dissecting the Social: On the Principles of Analytical Sociology. Cambridge: Cambridge University Press.
  • Hedström, P. 2006. “Explaining social change: An analytical approach”, Papers. Revista de Sociologia 80: 73-95.
  • Hedström, P. y P. Bearman (eds.). 2009. The Oxford handbook of analytical sociology. Oxford: Oxford University Press.
  • Hedström, P. y G. Manzo, (eds.) 2015. “Special Issue: Agent- Based Modeling: Advances and Challenges”, Sociological Methods & Research 44(2).
  • Hegselmann, R. y U. Krause. 2002. “Opinion dynamics and bounded confidence. Models, analysis and simulation”, Journal of Artificial Societies and Social Simulation, 5(3):2.
  • Holley, R. y T. M. Liggett. 1975. “Ergodic theorems for weakly interacting systems and the voter model”, The annals of probability 3(4): 643-663.
  • Ho?yst, J. A., K. Kacperski y F. Schweitzer. 2001. “Social impact models of opinion dynamics”, Annual Reviews Of Computational Physics IX: 253-273.
  • Imhoff, R. y H. P. Erb. 2009. “What motivates nonconformity? Uniqueness seeking blocks majority influence”, Personality and Social Psychology Bulletin 35(3): 309- 320.
  • Jager, W. y F. Amblard. 2005. “Uniformity, bipolarization and pluriformity captured as generic stylized behaviour with an agent-based simulation model of attitude change”, Computational & Mathematical Organization Theory 10(4): 295303.
  • Jarman, M., A. Nowak, W. Borkowski, D. Serfass, A. Wong y R. Vallacher. 2015. “The critical few: Anticonformists at the crossroads of minority opinion survival and collapse”, Journal of Artificial Societies and Social Simulation, 18(1)6.
  • Javarone, M. A. 2014. “Social influences in opinion dynamics: the role of conformity”, Physica A 414: 19-30.
  • Javarone M. A. y T. Squartini. 2015. “Conformism-driven phases of opinion formation on heterogeneous networks: the q-voter model case”, Journal of Statistical Mechanics: Theory and Experiment P10002.
  • Jiang, L. L., D.Y. Hua y T. Chen. (2007). “Nonequilibrium phase transitions in a model with social influence of inflexible units”. J. Phys. A: Math. Theor. 40: 11271-11276.
  • Jiang, L. L., D.Y. Hua, J.F. Zhu, B.H. Wang y T. Zhou. 2008. “Opinion dynamics on directed small-world networks”, The European Physical Journal B 65(2), 251255.
  • Klick, J. y F. Parisi. 2008. “Social networks, self-denial, and median preferences”, The Journal of Socio-Economics, 37: 13191327.
  • Kou, G., Y. Zhao, Y. Peng e Y. Shi. 2012. “Multi-level opinion dynamics under bonded confidence”, PlosOne, 7(9): e43507.
  • Krause, U. 2000. “A discrete nonlinear and non-autonomous model of consensus formation”. Pp. 227-236 en Communications in Difference Equations, editado por Elyadi, S., Ladas, G., Popenda, J. y J. Rakowski, Amsterdam: Gordon and Breach Pub.
  • Kurahashi-Nakamura, T., M. Mäs y J. Lorenz. 2016. “Robust clustering in generalized bounded confidence models”, Journal of Artificial Societies and Social Simulation, 19(4)7.
  • Kuran, T. 1987a. “Chameleon voters and public choice”, Public Choice 53(1): 53-78.
  • Kuran, T. 1987b. “Preference falsification, policy continuity and collective conservatism”, The Economic Journal, 97(387): 642-665.
  • Kuran, T. 1988. “The tenacious past: Theories of personal and collective conservatism”, Journal of Economic Behavior & Organization 10(2): 143-171.
  • Kuran, T. 1989. “Sparks and prairie fires: A theory of unanticipated political revolution”, Public Choice 61(1): 41-74.
  • Kuran, T. 1990. “Private and public preferences”, Economics and Philosophy 6: 1-26.
  • Kuran, T. 1991a. “Cognitive limitations and preference evolution”, Journal of Institutional and Theoretical Economics 147: 241-273. http://www.jstor.org/stable/40751404
  • Kuran, T. 1991b. “Now out of never: The element of surprise in the East European revolution of 1989”, World politics 44(01): 748.
  • Kuran, T. 1993. “The Unthinkable and the Unthought”, Rationality and Society 5(4): 473-505.
  • Kuran, T. 1995. Private truths, public lies: the social consequences of preference falsification. Cambridge, Mass: Harvard University Press.
  • Kuran, T. 2001. “Public opinion, microsociological aspects”. Pp. 12556-12560 en International Encyclopedia of the Social and Behavioral Sciences. Amsterdam: Pergamon.
  • Kurmyshev, E., y H. A. Juárez. 2013. “What is a leader of opinion formation in bounded confidence models?”, arXiv preprint arXiv:1305.4677. https://arxiv.org/abs/1305.4677 1-18.
  • Kurmyshev, E., H.A. Juárez y R.A. González-Silva. 2011. Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism. Physica A: Statistical Mechanics and its Applications, 390(16), pp.2945-2955.
  • Laguna, M. F., S.R. Gusman, G. Abramson, S. Gonçalves y J. R. Iglesias. 2005. “The dynamics of opinion in hierarchical organizations”, Physica A: Statistical Mechanics and its Applications 351(2-4): 580-592.
  • Lallouache, M., A. Chakraborti y B. K. Chakrabarti. 2010a. “Kinetic exchange models for social opinion formation”, Science and Culture 76(9-10): 485-488.
  • Lallouache, M., A.S. Chakrabarti, A. Chakraborti y B.K. Chakrabarti. 2010b. Opinion formation in kinetic exchange models: Spontaneous symmetry-breaking transition. Physical Review E, 82(5), p.056-112.
  • Lasswell, H. 1927. Propaganda techniques in the World War. Cambridge: MIT Press.
  • Latané, B. 1981. “The psychology of social impact”, American Psychologist 36(4): 343356.
  • Leonardelli, G. J., C.L. Pickett y M. B. Brewer. 2010. “Optimal distinctiveness theory: A framework for social identity, social cognition, and intergroup relations”, Advances in Experimental Social Psychology 43: 63113.
  • Linares, F. 2018. Sociología y teoría social analíticas. Madrid: Alianza editorial.
  • Lohmann, S. 1994. “The dynamics of informational cascades”, World Politics 47: 42101.
  • Lorenz, J. 2006. “Consensus strikes back in the Hegselmann- Krause model of continuous opinion dynamics under bounded confidence”, Journal of Artificial Societies and Social Simulation 9:8.
  • Lorenz, J. 2007. “Continuous opinion dynamics under bounded confidence: a survey”, International Journal of Modern Physics C 18(12): 1819-1838.
  • Lorenz, J. 2010. “Heterogeneous bounds of confidence: Meet, discuss and find consensus!”, Complexity 15(4): 43- 52.
  • Lorenz, J., H. Rauhut, F. Schweitzer y D. Helbing. 2011. “How social influence can undermine the wisdom of crowd effect”, Proceedings of the National Academy of Sciences 108: 90209025.
  • Macy, M. W., J.A. Kitts, A. Flache y S. Benard. 2003. “Polarization in dynamic networks: A hopfield model of emergent structure”. Pp. 162173 en Dynamic Social Network Modeling and Analysis. Washington D. C.: National Academies Press.
  • Makowsky, M. D. y J. Rubin. 2013. “An agent-based model of centralized institutions, social network technology, and revolution”, PLoS ONE 8(11): e80380.
  • Mark, N.P. 2003. “Culture and competition: Homophily and distancing explanations for cultural niches”, American Sociological Review 68(3): 319-345.
  • Marsden, P. V. 1981. “Introducing influence processes into a system of collective decision”, American Journal of Sociology 86: 1203-35.
  • Martins, A. C. 2008. “Continuous opinions and discrete actions in opinions dynamics problems”, International Journal of Modern Physics C 19(4): 617-624.
  • Mäs, M., A. Flache y J. A. Kitts. 2014. “Cultural integration and differentiation in groups and organizations”. Pp. 71-90 en Perspectives on Culture and Agent-Based Simulations. Nueva York: Springer.
  • Mäs, M., A. Flache y D. Helbing. 2010. “Individualization as driving force of clustering phenomena in humans”, PLoS Computational Biology. 6(10): e1000959.
  • Mäs, M. y A. Flache. 2013. “Diferentiation without distancing. explaining bipolarization of opinions without negative influence”, PLoS ONE, 8(11): e74516.
  • Mäs, M., A. Flache, K. Takacs y K. A. Jehn. 2013. “In the short term we divide, in the long term we unite: Demographic crisscrossing and the effects of fault lines on subgroup polarization”, Organization science 24(3): 716-736.
  • Maslach, C., J. Stapp y R. T. Santee. 1985. “Individuation: Conceptual analysis and assessment”, Journal of Personality and Social Psychology 49(3): 729-738.
  • Mavrodiev, P., C.J. Tessone y F. Schweitzer. 2013. “Quantifying the effects of social influence”, Scientific Reports 3: 1360.
  • Mirtabatabaei, A. y F. Bullo. 2012. “Opinion dynamics in heterogeneous networks: convergence conjectures and theorems”, SIAM Journal on Control and Optimization, 50(5): 2763-2785.
  • Mobilia, M., 2011. Fixation and polarization in a three-species opinion dynamics model. EPL (Europhysics Letters), 95(5), p.50002.
  • Mobilia, M., A. Petersen y S. Redner. 2007. “On the role of zealotry in the voter model”, Journal of Statistical Mechanics: Theory and Experiment 2007(08): P08029.
  • Moussaïd, M., J.E. Kämmer, P.P. Analytis y H. Neth. 2013. “Social influence and the collective dynamics of opinion formation”, Plos One 8(11): e78433.
  • Nail, P. R., G. MacDonald y D. A. Levy. 2000. “Proposal of a four-dimensional model of social response”, Psychological Bulletin 126(3): 454-470.
  • Nowak, A. y M. Lewenstein. 1996. “Modeling Social Change with Cellular Automata”. Pp. 249-285 en Modelling and Simulation in the Social Sciences From A Philosophy of Science Point of View editado por Hegselmann, R., Mueller, U. y K. G. Troitzsch. Dordrecht: Kluver.
  • Nowak, A., J. Szamrej y B. Latané. 1990. “From private attitude to public opinion: A dynamic theory of social impact”, Psychological Review 97(3), 362-376.
  • Nyczka, P., K. Sznajd-Weron y J. Cis?o. 2012. “Phase transitions in the q-voter model with two types of stochastic driving”, Physical Review E 86(1): 011105.
  • Regnault, D., N. Schabanel y É. Thierry. 2009. “Progresses in the analysis of stochastic 2D cellular automata: A study of asynchronous 2D minority”, Theoretical Computer Science 410(47-49): 4844-4855.
  • Rubin, J. 2014. “Centralized institutions and cascades”, Journal of Comparative Economics 42(2): 340-357.
  • Sabatelli, L. y P. Richmond. 2003. “Phase transitions, memory and frustration in a Sznajd-like model with synchronous updating”, International Journal of Modern Physics C, 14(09), 1223-1229.
  • Sabatelli, L. y P. Richmond. 2004. “Non-monotonic spontaneous magnetization in a Sznajd-like consensus model”, Physica A: Statistical Mechanics and its Applications, 334(1-2): 274-280.
  • Salzarulo, L. 2006. “A continuous opinion dynamics model based on the principle of meta-contrast”, Journal of Artificial Societies and Social Simulation 9(1).
  • Schulze, C. 2004. “Sznajd opinion dynamics with global and local neighborhood”, International Journal of Modern Physics C 15(06): 867-872.
  • Sen, P. 2011. “Phase transitions in a two-parameter model of opinion dynamics with random kinetic exchanges”, Physical Review E 83(1): 016108.
  • Sen, P. 2012. “Nonconservative kinetic exchange model of opinion dynamics with randomness and bounded confidence”, Physical Review E 86(1): 016115.
  • Shin, J.K. y J. Lorenz. 2010. “Tipping diffusivity in information accumulation systems: More links, less consensus”, Journal of Statistical Mechanics: Theory and Experiment 2010(06): P06005.
  • Sîrbu, A., V. Loreto, V.D.P. Servedio y F. Tria. 2007. “Opinion dynamics: model, extensions and external effects”. Pp. 363-401 en Participatory Sensing, Opinions and Collective Awareness. Suiza: Springer, Cham.
  • Smaldino, P. E. y J. M. Epstein. 2015. “Social conformity despite individual preferences for distinctiveness”, Royal Society Open Science 2(3): 140437.
  • Sobkowicz, P. 2003. “Opinion formation in networked societies with strong leaders”, arXiv preprint arXiv:cond-mat/0311521. https://arxiv.org/abs/cond-mat/0311521
  • Sobkowicz, P. 2009. “Modeling opinion formation with physics tools: a call for closer link with reality”, Journal of Artificial Societies and Social Simulation 12(1): 11.
  • Sobkowicz, P. 2010. “Effect of leader’s strategy on opinion formation in networked societies with local interactions”, International Journal of Modern Physics C 21(06): 839- 852.
  • Sousa, A.O. 2004. “Bounded confidence model on a still growing scale-free network”, arXiv preprint arXiv:cond-mat/0406766. https://arxiv.org/abs/cond-mat/0406766
  • Sousa, A. O. 2005. “Consensus formation on a triad scale-free network”, Physica A: Statistical Mechanics and its Applications 348: 701-710.
  • Stauffer, D. 2002. “The Sznajd model of consensus building with limited persuasion”, International Journal of Modern Physics C 13(3): 315-317.
  • Stauffer, D. 2003. “How to convince others: Monte Carlo simulations of the Sznajd model”. Pp. 147-155 en The Monte Carlo Method in the Physical Sciences, editado por J. E. Gubernatis. Los Alamos: American Institute of Physics.
  • Stauffer, D. y J. S. Martins. 2004. “Simulation of Galam’s contrarian opinions on percolative lattices”, Physica A: Statistical Mechanics and its Applications, 334(3-4): 558-565.
  • Stauffer, D., A. Sousa y C. Schulz. 2004. “Discretized opinion dynamics of the Deffuant model on scale-free networks”, Journal of Artificial Societies and Social Simulation 7(3).
  • Sznajd-Weron, K. (2005). “Sznajd model and its applications”, Acta Physica Polonica B 36(8): 2537-2547.
  • Sznajd-Weron, K. y J. Sznajd. 2000. “Opinion Evolution in a Closed Community”, International Journal of Modern Physics C 11(6): 1157-1165.
  • Tessone, C. J., R. Toral, P. Amengual, H.S. Wio y M. San Miguel. 2004. “Neighborhood models of minority opinion spreading”, The European Physical Journal B-Condensed Matter and Complex Systems 39(4): 535-544.
  • Tullock, G. 1974. The social dilemma: The economics of war and revolution. Blacksburg, VA: University Publications.
  • Vázquez, F., P.L. Krapivsky y S. Redner. 2003. “Constrained opinion dynamics: freezing and slow evolution”, Journal of Physics A: Mathematical and General 36(3): 6168.
  • Visser, P. S., G.Y. Bizer y J. A. Krosnick. 2006. “Exploring the latent structure of strength-related attitude attributes.” Pp. 1-60 en Advances in experimental social psychology (Vol.38) editado por M. Zanna. New York: Academic Press.
  • Watts, D. y P. S. Dodds. 2007. “Influentials, networks, and public opinion formation”, Journal of Consumer Research 34: 441-458.
  • Watts, D. y P. S. Dodds. 2009. “Threshold models of social influence”. Pp. 475497 en The Oxford Handbook of Analytical Sociology, editado por P. Hedström y P. Bearman. Oxford: Oxford University Press.
  • Weisbuch, G., G. Deffuant, F. Amblard y J. P. Nadal. 2002. “Meet, Discuss and Segregate!”, Complexity 7(3):55- 63.
  • Weisbuch, G., G. Deffuant, F. Amblard y J. P. Nadal. 2003. “Interacting agents and continuous opinions dynamics”. Pp. 225-242 en Heterogenous agents, interactions and economic performance, editado por R. Cowan y N. Jonard. Berlin, Heidelberg: Springer.