Recycled concrete with coarse recycled aggregate. An overview and analysis

  1. B. González-Fonteboa
  2. S. Seara-Paz
  3. J. de Brito
  4. I. González-Taboada
  5. F. Martínez-Abella
  6. R. Vasco-Silva
Revista:
Materiales de construcción

ISSN: 0465-2746

Año de publicación: 2018

Volumen: 68

Número: 330

Tipo: Artículo

DOI: 10.3989/MC.2018.13317 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Materiales de construcción

Resumen

El campo de la construcción ha contribuido a la degradación del medio ambiente, produciendo gran cantidad de residuos de construcción y demolición y consumiendo grandes volúmenes de recursos naturales. En este contexto, el hormigón reciclado se ha presentado como una opción para preservar los recursos naturales y reducir el espacio destinado a vertedero. Así, durante las últimas décadas, muchos investigadores han desarrollado trabajos para estudiar las propiedades del hormigón reciclado. Este artículo se centra en el hormigón estructural fabricado con árido reciclado grueso procedente de residuos de hormigón. El principal objetivo es desarrollar un estado del arte que recoja las principales propiedades del hormigón reciclado y un análisis de cómo calcularlas teniendo en cuenta un gran número de trabajos relevantes en este ámbito. Adicionalmente, el estudio recopila y actualiza el conocimiento sobre estos hormigones, proponiendo ecuaciones que permitan definir sus resistencias mecánicas, módulo de elasticidad, tensión-deformación, fluencia y retracción.

Referencias bibliográficas

  • United Nations, Sustainable Development Goals (SDGs): 17 goals to transform our world, (2015) 1. https://www.un.org/sustainabledevelopment/sustainable-development-goals/.
  • Seara-Paz, S.; González-Fonteboa, B.; Martínez-Abella, F.; González-Taboada, I. (2016) Time-dependent behaviour of structural concrete made with recycled coarse aggregates. Creep and shrinkage. Constr. Build. Mater. 122, 95–109. https://doi.org/10.1016/j.conbuildmat.2016.06.050
  • Corinaldesi, V.; Moriconi, G. (2010) Recycling of rubble from building demolition for low-shrinkage concretes. Waste Manag. 30, 655–659. https://doi.org/10.1016/j.wasman.2009.11.026 PMid:20022737
  • Domingo, A.; Lázaro, C.; Gayarre, F.L.; Serrano, M.A.; López-Colina, C. (2009) Long term deformations by creep and shrinkage in recycled aggregate concrete. Mater. Struct. 43 [8], 1147–1160. https://doi.org/10.1617/s11527-009-9573-0
  • González-Fonteboa, B.; Martínez-Abella, F.; Herrador, M.F.; Seara-Paz, S. (2012) Structural recycled concrete: Behaviour under low loading rate. Constr. Build. Mater. 28 [1], 111–116. https://doi.org/10.1016/j.conbuildmat.2011.08.010
  • Manzi, S.; Mazzotti, C.; Bignozzi, M.C. (2013) Short and long-term behavior of structural concrete with recycled concrete aggregate. Cem. Concr. Compos. 37, 312–318. https://doi.org/10.1016/j.cemconcomp.2013.01.003
  • Corinaldesi, V.; Letelier, V.; Moriconi, G. (2011) Behaviour of beam-column joints made of recycled-aggregate concrete under cyclic loading. Constr. Build. Mater. 25 [4], 1877–1882. https://doi.org/10.1016/j.conbuildmat.2010.11.072
  • Corinaldesi, V.; Moriconi, G. (2011) The role of industrial by-products in self-compacting concrete. Constr. Build. Mater. 25 [8], 3181–3186. https://doi.org/10.1016/j.conbuildmat.2011.03.001
  • González-Taboada, I.; González-Fonteboa, B.; Martínez-Abella, F., Pérez-Ordó-ez, J.L. (2013) Prediction of the mechanical properties of structural recycled concrete using multivariable regression and genetic programming. Constr. Build. Mater. 106, 480–499. https://doi.org/10.1016/j.conbuildmat.2015.12.136
  • Kou, S.C.; Poon, C.S.; Wan, H.W. (2012) Properties of concrete prepared with low-grade recycled aggregates. Constr. Build. Mater. 36, 881–889. https://doi.org/10.1016/j.conbuildmat.2012.06.060
  • Mas, B.; Cladera, A.; Del Olmo, T.; Pitarch, F. (2012) Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use. Constr. Build. Mater. 27 [1], 612–622. https://doi.org/10.1016/j.conbuildmat.2011.06.073
  • Nealen, A.; Schenk, S. (1998) The influence of recycled aggregate core moisture on freshly mixed and hardened concrete properties. Darmstadt Concr. 13.
  • Ravindrarajah, S.R.; Tam, C.T.; Loo, Y.H. (1987) Recycled concrete as fine and coarse aggregate in concrete. Mag. Concr. Res. 39 [141], 214–220. https://doi.org/10.1680/macr.1987.39.141.214
  • González-Taboada, I.; González-Fonteboa, B., Martínez-Abella, F.; Carro-López, D. (2016) Study of recycled concrete aggregate quality and its relationship with recycled concrete compressive strength using database analysis. Mater. Construcc. 66 [323], e089. https://doi.org/10.3989/mc.2016.06415
  • Corinaldesi, V. (2012) Environmentally-friendly bedding mortars for repair of historical buildings. Constr. Build. Mater. 35, 778–784. https://doi.org/10.1016/j.conbuildmat.2012.04.131
  • Nagataki, S.; Gokce, A.; Saeki, T.; Hisada, M. (2004) Assessment of recycling process induced damage sensitivity of recycled concrete aggregates. Cem. Concr. Res. 34 [6], 965–971. https://doi.org/10.1016/j.cemconres.2003.11.008
  • Evangelista, L.; De Brito, J. (2014) Concrete with fine recycled aggregates: A review. Eur. J. Environ. Civ. Eng. 18 [2], 129–172. https://doi.org/10.1080/19648189.2013.851038
  • Otsuki, N.; Miyazato, S.-I.; Yodsudjai, W. (2003) Influence of recycled aggregate on interfacial transition zone, strength, chloride penetration and carbonation of concrete. J. Mater. Civ. Eng. 15 [5], 443-451. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443)
  • Etxeberria, M.; Vázquez, E.; Marí, A. (2006) Microstructure analysis of hardened recycled aggregate concrete. Mag. Concr. Res. 58 [10], 683-690. https://doi.org/10.1680/macr.2006.58.10.683
  • Xiao, J.; Li, W., Corr, D.J.; Shah, S.P. (2013) Effects of interfacial transition zones on the stress–strain behavior of modeled recycled aggregate concrete. Cem. Concr. Res. 52, 82–99. https://doi.org/10.1016/j.cemconres.2013.05.004
  • Pedro, D.; de Brito, J.; Evangelista, L. (2015) Performance of concrete made with aggregates recycled from precasting industry waste: influence of the crushing process. Mater. Struct. 48 [12], 3965–3978. https://doi.org/10.1617/s11527-014-0456-7
  • Silva, R.V.; De Brito, J.; Dhir, R.K. (2015) The influence of the use of recycled aggregates on the compressive strength of concrete: A review. Eur. J. Environ. Civ. Eng. 19 [7], 825-849. https://doi.org/10.1080/19648189.2014.974831
  • Laserna, S.; Montero, J. (2016) Influence of natural aggregates typology on recycled concrete strength properties. Constr. Build. Mater. 115, 78-86. https://doi.org/10.1016/j.conbuildmat.2016.04.037
  • Silva, R. V.; Neves, R.; De Brito, J.; Dhir, R.K. (2015) Carbonation behaviour of recycled aggregate concrete. Cem. Concr. Compos. 62, 22–32. https://doi.org/10.1016/j.cemconcomp.2015.04.017
  • Kovler, K.; Roussel, N. (2011) Properties of fresh and hardened concrete. Cem. Concr. Res. 41 [7], 775–792. https://doi.org/10.1016/j.cemconres.2011.03.009
  • Poon, C.S.; Kou, S.C.; Lam, L. (2007) Influence of recycled aggregate on slump and bleeding of fresh concrete. Mater. Struct. 40 [9], 981–988. https://doi.org/10.1617/s11527-006-9192-y
  • Xiao, J.; Li, W.; Fan, Y.; Huang, X. (2012) An overview of study on recycled aggregate concrete in China (1996-2011). Constr. Build. Mater. 31, 364–383. https://doi.org/10.1016/j.conbuildmat.2011.12.074
  • Xiao, J.; Li, J.; Zhang, C. (2005) On statistical characteristics of the compressive strength of recycled aggregate concrete. Struct. Concr. 6 [4], 149-153. https://doi.org/10.1680/stco.2005.6.4.149
  • Pedro, D.; de Brito, J.; Evangelista, L. (2017) Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties. Constr. Build. Mater. 154, 294–309. https://doi.org/10.1016/j.conbuildmat.2017.07.215
  • Rahal, K. (2007) Mechanical properties of concrete with recycled coarse aggregate. Build. Environ. 42 [1], 407–415. https://doi.org/10.1016/j.buildenv.2005.07.033
  • Duan, Z.H.; Kou, S.C.; Poon, C.S. (2013) Using artificial neural networks for predicting the elastic modulus of recycled aggregate concrete. Constr. Build. Mater. 44, 524-532. https://doi.org/10.1016/j.conbuildmat.2013.02.064
  • Park, W.-J., Noguchi, T.; Shin, S.-H.; Oh, D.-Y. (2015) Modulus of elasticity of recycled aggregate concrete. Mag. Concr. Res. 67 [11], 585-591. https://doi.org/10.1680/macr.14.00213
  • Li, X. (2008) Recycling and reuse of waste concrete in China. Part I. Material behaviour of recycled aggregate concrete. Resour. Conserv. Recycl. 53 [1-2], 36–44. https://doi.org/10.1016/j.resconrec.2008.09.006
  • Zhou, C.; Chen, Z. (2017) Mechanical properties of recycled concrete made with different types of coarse aggregate. Constr. Build. Mater. 134, 497–506. https://doi.org/10.1016/j.conbuildmat.2016.12.163
  • Eiras-López, J.; Seara-Paz, S.; González-Fonteboa, B.; Martínez-Abella, F. (2017) Bond behaviour of recycled concrete. Analysis and prediction of bond stress-slip curve. J. Mater. Civ. Eng. 29 [10].
  • Corinaldesi, V. (2010) Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates. Constr. Build. Mater. 24 [9], 1616–1620. https://doi.org/10.1016/j.conbuildmat.2010.02.031
  • de Brito, J.; Robles, R. (2010) Recycled aggregate concrete (RAC) methodology for estimating its long-term properties. Indian J. Eng. Mater. Sci. 17 [6], 449–462.
  • Behnood, A.; Olek, J.; Glinicki, M.A. (2015) Predicting modulus elasticity of recycled aggregate concrete using M5? model tree algorithm. Constr. Build. Mater. 94, 137-147. https://doi.org/10.1016/j.conbuildmat.2015.06.055
  • Silva, R.V.; De Brito, J.; Dhir, R.K. (2015) Tensile strength behaviour of recycled aggregate concrete. Constr. Build. Mater. 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
  • Silva, R. V.; De Brito, J.; Dhir, R.K. (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 65, 201–217. https://doi.org/10.1016/j.conbuildmat.2014.04.117
  • Ravindrarajah, S.R.; Tam, C.T. (1985) Properties of concrete made with crushed concrete as coarse aggregate. Mag. Concr. Res. 37 [130]; 29-38. https://doi.org/10.1680/macr.1985.37.130.29
  • Etxeberria, M.; Marí, A. R.; Vázquez, E. (2007) Recycled aggregate concrete as structural material. Mater. Struct. 40 [5], 529–541. https://doi.org/10.1617/s11527-006-9161-5
  • González-Fonteboa, B.; Martínez-Abella, F.; Carro López, D.; Seara-Paz, S. (2011) Stress–strain relationship in axial compression for concrete using recycled saturated coarse aggregate. Constr. Build. Mater. 25 [5], 2335–2342. https://doi.org/10.1016/j.conbuildmat.2010.11.031
  • Xiao, J.Z.; Li, J.B.; Zhang, C. (2006) On relationships between the mechanical properties of recycled aggregate concrete: An overview. Mater. Struct. 39 [6], 655–664. https://doi.org/10.1617/s11527-006-9093-0
  • Katz, A. (2003) Properties of concrete made with recycled aggregate from partially hydrated old concrete. Cem. Concr. Res. 33 [5], 703–711. https://doi.org/10.1016/S0008-8846(02)01033-5
  • Li, J.; Xiao, H. Zhou, Y. (2009) Influence of coating recycled aggregate surface with pozzolanic powder on properties of recycled aggregate concrete. Constr. Build. Mater. 23 [3], 1287-1291. https://doi.org/10.1016/j.conbuildmat.2008.07.019
  • Sucic, A.; Lotfy, A. (2016) Effect of new paste volume on performance of structural concrete using coarse and granular recycled concrete aggregate of controlled quality. Constr. Build. Mater. 108, 119–128. https://doi.org/10.1016/j.conbuildmat.2015.10.064
  • Male?ev, M.; Radonjanin, V.; Marinkovi?, S. (2010) Recycled concrete as aggregate for structural concrete production. Sustainability. 2, 1204-1225. https://doi.org/10.3390/su2051204
  • Ajdukiewicz, A.; Kliszczewicz, A. (2002) Influence of recycled aggregates on mechanical properties of HS/HPC. Cem. Concr. Comp. 24 [2], 269–279. https://doi.org/10.1016/S0958-9465(01)00012-9
  • Behera, M.; Bhattacharyya, S.K.; Minocha, A.K.; Deoliya, R.; Maiti, S. (2014) Recycled aggregate from C&D waste & its use in concrete - A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 68, 501–516. https://doi.org/10.1016/j.conbuildmat.2014.07.003
  • Bairagi, N.K.; Ravande, K.; Pareek, V.K. (1993) Behaviour of concrete with different proportions of natural and recycled aggregates. Resour. Conserv. Recycl. 9 [1-2], 109-126. https://doi.org/10.1016/0921-3449(93)90036-F
  • López, F. (2008) Influencia de la variación de los parámetros de dosificación y fabricación de hormigón reciclado estructural sobre sus propiedades físicas y mecánicas. University of Oviedo (2008).
  • Chakradhara Rao, M.; Bhattacharyya, S.K.; Barai, S. V. (2011) Influence of field recycled coarse aggregate on properties of concrete. Mater. Struct. 44 [1], 205–220. https://doi.org/10.1617/s11527-010-9620-x
  • Padmini, A.K.; Ramamurthy, K.; Mathews, M.S. (2009) Influence of parent concrete on the properties of recycled aggregate concrete. Constr. Build. Mater. 23 [2], 829-836. https://doi.org/10.1016/j.conbuildmat.2008.03.006
  • Bhikshma, V.; Kishore, R. (2010) Development of stress - strain curves for recycled aggregate concrete. Asian J. Civ. Eng. 11 [2], 253-261.
  • Corinaldesi, V. (2010) Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates. Constr. Build. Mater. 24 [9], 1616-1620. https://doi.org/10.1016/j.conbuildmat.2010.02.031
  • Tangchirapat, W.; Buranasing, R.; Jaturapitakkul, C. (2010) Use of high fineness of fly ash to improve properties of recycled aggregate concrete. J. Mater. Civ. Eng. 22 [6], 565-571. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000054
  • Zilch, K.; Roos, F. (2001) An equation to estimate the modulus of elasticity of concrete with recycled aggregates. Civ. Eng. (in Ger) 76, 187–191.
  • Dhir, R.K.; Limbachiya, M.C.; Leelawat, T. (1999) Suitability of recycled concrete aggregate for use in BS 5328 designated mixes. Proc. Inst. Civ. Eng. Struct. Build. 134 [3], 257-274. https://doi.org/10.1680/istbu.1999.31568
  • Mellmann, G. (1999) Processed concrete rubble for the reuse as aggregate. Proc. Int. Semin. Exploit. Waste Concr., 171–178.
  • KaziKaki, M.; Harada, M., Soshiroda, T., Kubota, S.; Ikeda, T.; Kasai, Y. (1988) Strenght and elastic modulus of recycled aggregate concrete. in: 2nd Int. RILEM Symp. Demolition Reuse Concr. Mason., 565–574.
  • Ravindrarajah, S.R.; Loo, Y.H.; Tam, T. (1987) Recycled concrete as fine and coarse aggregates in concrete. Mag. Concr. Res. 39 [141], 214-220. https://doi.org/10.1680/macr.1987.39.141.214
  • Ravindrarajah, S.R.; Tam, C.T. (1985) Properties of concrete made with crushed concrete as coarse aggregate. Mag. Concr. Res. 37 [130], 29–38. https://doi.org/10.1680/macr.1985.37.130.29
  • Dillman, R. (1998) Concrete with recycled concrete aggregate. in: Int. Symp. Sustain. Constr. Use Recycl. Concr. Aggreg., 239–253.
  • Dhir, R.K.; Limbachiya, M.C.; Leelawat, T. (1999) Suitability of recycled concrete aggregate for use in BS 5328 designated mixes. Proc. Inst. Civ. Eng. - Struct. Build. 134 [3], 257–274. https://doi.org/10.1680/istbu.1999.31568
  • Spanish Ministry of public works. (2008) EHE-08. Regulation of Structural Concrete (In Spanish), Madrid (Spain).
  • European Committee. (2004) Eurocode 2: Design of concrete structure. Brussels (2004).
  • Folino, P.; Xargay, H. (2014) Recycled aggregate concrete - Mechanical behavior under uniaxial and triaxial compression. Constr. Build. Mater. 56, 21-31. https://doi.org/10.1016/j.conbuildmat.2014.01.073
  • Fathifazl, G.; Ghani Razaqpur, A.; Burkan Isgor, O.; Abbas, A.; Fournier, B.; Foo, S. (2011) Creep and drying shrinkage characteristics of concrete produced with coarse recycled concrete aggregate. Cem. Concr. Compos. 33 [10], 1026–1037. https://doi.org/10.1016/j.cemconcomp.2011.08.004
  • Xiao, J.; Li, J.; Zhang, C. (2005) Mechanical properties of recycled aggregate concrete under uniaxial loading. Cem. Concr. Res. 35 [6], 1187–1194. https://doi.org/10.1016/j.cemconres.2004.09.020
  • Yang, H.; Deng, Z.; Ingham, J.M. (2016) Bond position function between corroded reinforcement and recycled aggregate concrete using beam tests. Constr. Build. Mater. 127, 518-526. https://doi.org/10.1016/j.conbuildmat.2016.10.008
  • Du, T.; Wang, W., Liu, Z.; Lin, H.; Guo, T. (2010) The complete stress-strain curve of recycled aggregate concrete under uniaxial compression loading. J. Wuhan Univ. Technol. Mater. Sci. Ed. 25 [5], 862-865. https://doi.org/10.1007/s11595-010-0109-9
  • G, B., Y, M.; J, M. (1978) New material from concrete demolition waste. in: Bibet. Proc. Int. Conf. Use by-Products Waste Civ. Eng., Paris (in French) (1978).
  • Rühl, M.; Atkinson, G. (1999) The influence of recycled aggregate on the stress–strain relation of concrete. Darmstadt Concr. (1999).
  • Liu, Q., Xiao, J.; Sun, Z. (2011) Experimental study on the failure mechanism of recycled concrete. Cem. Concr. Res. 41 [10], 1050-1057. https://doi.org/10.1016/j.cemconres.2011.06.007
  • Holt, E.E. (2001) Early age autogenous shrinkage of concrete. VTT Publ., Finland, 2–184.
  • Sagoe-Crentsil, K.K.; Brown, T.; Taylor, A.H. (2001) Performance of concrete made with commercially produced coarse recycled concrete aggregate. Cem. Concr. Res. 31 [5], 707–712. https://doi.org/10.1016/S0008-8846(00)00476-2
  • Domingo-Cabo, A.; Lázaro, C.; López-Gayarre, F.; Serrano-López, M.A.; Serna, P.; Casta-o-Tabares, J.O. (2009) Creep and shrinkage of recycled aggregate concrete. Constr. Build. Mater. 23 [7], 2545-2553. https://doi.org/10.1016/j.conbuildmat.2009.02.018
  • Morohashi, N.; Sakurada, T.; Yanagibashi, K. (2007) Bond splitting strength of high-quality recycled coarse aggregate concrete beams. J. Asian Archit. Build. Eng. 6 [2], 331–337. https://doi.org/10.3130/jaabe.6.331
  • Brand, A.S.; Roesler, J.R.; Salas, A. (2015) Initial moisture and mixing effects on higher quality recycled coarse aggregate concrete. Constr. Build. Mater. 79, 83–89. https://doi.org/10.1016/j.conbuildmat.2015.01.047
  • Seara-Paz, S.; Corinaldesi, V.; González-Fonteboa, B.; Martínez-Abella, F. (2016) Influence of recycled coarse aggregates characteristics on mechanical properties of structural concrete. Eur. J. Environ. Civ. Eng. 20 [1], s123–s139. https://doi.org/10.1080/19648189.2016.1246694
  • Tam, V.W.Y.; Kotrayothar, D.; Xiao, J. (2015) Long-term deformation behaviour of recycled aggregate concrete. Constr. Build. Mater. 100, 262–272. https://doi.org/10.1016/j.conbuildmat.2015.10.013
  • Silva, R.V.; de Brito, J.; Dhir, R.K. (2015) Prediction of the shrinkage behavior of recycled aggregate concrete: A review. Constr. Build. Mater. 77, 327–339. https://doi.org/10.1016/j.conbuildmat.2014.12.102
  • Eckert, M.; Oliveira, M. (2017) Mitigation of the negative effects of recycled aggregate water absorption in concrete technology. Constr. Build. Mater. 133, 416–424. https://doi.org/10.1016/j.conbuildmat.2016.12.132
  • Xiao, J.; Fan, Y.; Tam, V.W.Y. (2015) On creep characteristics of cement paste, mortar and recycled aggregate concrete. Eur. J. Environ. Civ. Eng. 19 [10], 1234–1252. https://doi.org/10.1080/19648189.2015.1008652
  • Poon, C.S.; Kou, S.C. (2004) Properties of steam cured recycled aggregate concrete. in: Sustain. Waste Manag. Recycl. Constr. Demolition Waste, 1–12. PMid:15707569
  • Hanif, A.; Kim, Y.; Lee, K.; Park, C.; Sim, J. (2017) Influence of cement and aggregate type on steam-cured concrete – an experimental study. Mag. Concr. Res. 69 [13], 694-702. https://doi.org/10.1680/jmacr.17.00015
  • Masatao, T.; Takafumi, N.; Masaki, T.; Manabu, K.; Ippei, M.; Hironori, N. (2006) Study of the application of low - quality recycled coarse aggregate to concrete structure by surface modification treatment. in: 2nd Asian Concr. Fed. Conf., Bali, Indonesia.
  • Gómez-Soberón, J.M.V. (2002) Porosity of recycled concrete with substitution of recycled concrete aggregate: An experimental study. Cem. Concr. Res. 32 [8], 1301-1311. https://doi.org/10.1016/S0008-8846(02)00795-0
  • Andreu, G.; Miren, E. (2014) Experimental analysis of properties of high performance recycled aggregate concrete. Constr. Build. Mater. 52, 227–235. https://doi.org/10.1016/j.conbuildmat.2013.11.054
  • Butler, L.; West, J.S.; Tighe, S.L. (2013) Effect of recycled concrete coarse aggregate from multiple sources on the hardened properties of concrete with equivalent compressive strength. Constr. Build. Mater. 47, 1292–1301. https://doi.org/10.1016/j.conbuildmat.2013.05.074
  • Nishibayashi, S.; Yamura, K. (1988) Mechanical properties and durability of concrete from recycled coarse aggregate prepared by crushing concrete. in: Proc. Second Int. RILEM Symp. Demolition Reuse Concr. Masonry, CRC Press, 652–659.
  • Tsujino, M.; Noguchi, T.; Tamura, M.; Kanematsu, M.; Maruyama, I.; Nagai, H. (2006) Study on the application of low-quality coarse aggregate to concrete structure by surface-modification treatment. 2nd Asian Concr. Fed. Conf., Bali, Indonesia (2006), 36–45.
  • Yang, Y.F.; Han, L.H.; Wu, X. (2008) Concrete shrinkage and creep in recycled aggregate concrete-filled steel tubes. Adv. Struct. Eng. 11 [4], 383–396. https://doi.org/10.1260/136943308785836772
  • Limbachiya, M.C.; Leelawat, T.; Dhir, R.K. (2000) Use of recycled concrete aggregate in high-strength concrete. Mater. Struct. 33, 574–580. https://doi.org/10.1007/BF02480538
  • González, B.; Martínez, F. (2004) Shear strength of concrete with recycled aggregates. in: eds. Vázquez E, Hendriks C & Janssen GMT (Ed.), Int. RILEM Conf. Use Recycl. Mater. Build. Struct., Barcelona, Spain, 619–628.
  • González-Fonteboa, B.; Martínez-Abella, F. (2005) Hormigones con áridos reciclados: estudio de propiedades de los áridos y de las mezclas. Mater. Construcc. 55 [279], 53–66. https://doi.org/10.3989/mc.2005.v55.i279.198
  • Amorim, P.; de Brito, J.; Evangelista, L. (2012) Concrete Made with Coarse Concrete Aggregate: Influence of Curing on Durability. ACI Mater. J. 109 [2], 195–204.
  • Correia, J.R.; de Brito, J.; Pereira, A.S. (2006) Effects on concrete durability of using recycled ceramic aggregates. Mater. Struct. 39 [2], 169–177. https://doi.org/10.1617/s11527-005-9014-7
  • Buyle-Bodin, F.; Hadjieva-Zaharieva, R. (2002) Influence of industrially produced recycled aggregates on flow properties of concrete. Mater. Struct. Constr. 35 [8], 504-509. https://doi.org/10.1007/BF02483138
  • Ferreira, L.; De Brito, J.; Barra, M. (2011) Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties. Mag. Concr. Res. 63 [8], 617-627. https://doi.org/10.1680/macr.2011.63.8.617
  • Pedro, D.; De Brito, J.; Evangelista, L. (2014) Influence of the use of recycled concrete aggregates from different sources on structural concrete. Constr. Build. Mater. 71, 141–151. https://doi.org/10.1016/j.conbuildmat.2014.08.030
  • Pedro, D.; De Brito, J.; Evangelista, L. (2017) Evaluation of high-performance concrete with recycled aggregates: Use of densified silica fume as cement replacement. Constr. Build. Mater. 147, 803–814. https://doi.org/10.1016/j.conbuildmat.2017.05.007
  • Padmini, A.K.; Ramamurthy, K.; Mathews, M.S. (2002) Relative moisture movement through recycled aggregate concrete. Mag. Concr. Res. 54 [5], 377–384. https://doi.org/10.1680/macr.2002.54.5.377
  • Matias, D.; de Brito, J.; Rosa, A.; Pedro, D. (2014) Durability of Concrete with Recycled Coarse Aggregates: Influence of Superplasticizers. J. Mater. Civ. Eng. 26 [7], 6014011. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000961
  • Matias, D.; de Brito, J.; Rosa, A.; Pedro, D. (2013) Mechanical properties of concrete produced with recycled coarse aggregates – Influence of the use of superplasticizers. Constr. Build. Mater. 44, 101–109. https://doi.org/10.1016/j.conbuildmat.2013.03.011
  • Tam, V.W.Y.; Gao, X.F.; Tam, C.M. (2005) Microstructural analysis of recycled aggregate concrete produced from two-stage mixing approach. Cem. Concr. Res. 35 [6], 1195–1203. https://doi.org/10.1016/j.cemconres.2004.10.025
  • Poon, C.-S.; Chan, D. (2007) Effects of contaminants on the properties of concrete paving blocks prepared with recycled concrete aggregates. Constr. Build. Mater. 21 [1], 164–175. https://doi.org/10.1016/j.conbuildmat.2005.06.031
  • Kou, S.C.; Poon, C.S.; Etxeberria, M. (2011) Influence of recycled aggregates on long term mechanical properties and pore size distribution of concrete. Cem. Concr. Compos. 33 [2], 286–291. https://doi.org/10.1016/j.cemconcomp.2010.10.003
  • Rao, A.; Jha, K.N.; Misra, S. (2007) Use of aggregates from recycled construction and demolition waste in concrete. Resour. Conserv. Recycl. 50 [1], 71–81. https://doi.org/10.1016/j.resconrec.2006.05.010
  • Kikuchi, M.; Yasunaga, A.; Ehara, E. (1993) The total evaluation of recycled aggregate and recycled concrete. in: ed. In: Lauritzen EK (Ed.), Proc. Third Int. RILEM Symp. Demolition Reuse Concr. Mason., Odense, Denmark, 425–436.
  • Kimura, Y.; Imamoto, K.; Nagayama, M.; Tamura, H. (2004) High quality recycled aggregate concrete (HiRAC) processed by decompression and rapid release. in: E. In: Kashino N & Ohama Y (Ed.), Int. RILEM Symp. Environ. Mater. Syst. Sustain. Dev., College of Engineering, Nihon University, Koriyama, Japan, 163–170.
  • Teranishi, K, Y. Dosho, M. Narikawa, M. Kikuchi, Application of recycled aggregate concrete for structural concrete: Part 3 - Production of recycled aggregate by real-scale plant and quality of recycled aggregate concrete. in: E. In: Dhir RK, Henderson NA & Limbachiya MC (Ed.), Proc. Int. Symp. Sustain. Constr. Use Recycl. Concr. Aggreg., London, UK (1998), 143–156.
  • Ryu, J.S. (2002) An experimental study on the effect of recycled aggregate on concrete properties. Mag. Concr. Res. 54 [1], 7-12. https://doi.org/10.1680/macr.2002.54.1.7
  • Eguchi, K.; Teranishi, K.; Nakagome, A.; Kishimoto, H.; Shinozaki, K.; Narikawa, M. (2007) Application of recycled coarse aggregate by mixture to concrete construction. Constr. Build. Mater. 21 [7], 1542–1551. https://doi.org/10.1016/j.conbuildmat.2005.12.023
  • Dosho, Y. (2007) Development of a Sustainable Concrete Waste Recycling System -Application of Recycled Aggregate Concrete Produced by Aggregate Replacing Method. J. Adv. Concr. Technol. 5 [2], 27–42. https://doi.org/10.3151/jact.5.27 https://doi.org/10.3151/jact.5.27
  • Ridzuan, A.; Ibrahim, A.; Ismail, A.; Diah, A. (2005) Durability performance of recycled aggregate concrete. in: E. In: Dhir RK, Dyer TD & Newlands MD (Ed.), Proc. Int. Conf. Glob. Constr. Ultim. Concr. Oppor. Achiev. Sustain. Constr., London, UK, 193–202.
  • Kou, S.-C.; Poon, C.-S. (2013) Long-term mechanical and durability properties of recycled aggregate concrete prepared with the incorporation of fly ash. Cem. Concr. Compos. 37, 12-19. https://doi.org/10.1016/j.cemconcomp.2012.12.011
  • Silva, R.V.; de Brito, J.; Neves, R.; Dhir, R.; Silva, R.V. (2015) Prediction of Chloride Ion Penetration of Recycled Aggregate Concrete. Mater. Res. 18 [2], 427–440. https://doi.org/10.1590/1516-1439.000214
  • Tam, V.W.Y.; Tam, C.M. (2007) Assessment of durability of recycled aggregate concrete produced by two-stage mixing approach. J. Mater. Sci. 42 [10], 3592–3602. https://doi.org/10.1007/s10853-006-0379-y
  • Shicong, K.; Poon, C.S. (2006) Compressive strength, pore size distribution and chloride-ion penetration of recycled aggregate concrete incorporating class-F fly ash. J. Wuhan Univ. Technol. Sci. Ed. 21, 130–136. https://doi.org/10.1007/BF02841223
  • Gonçalves, A.; Esteves, A.; Vieira, M. (2004) Influence of recycled concrete aggregates on concrete durability. in: eds. Vázquez E, Hendriks C & Janssen GMT (Ed.), Int. RILEM Conf. Use Recycl. Mater. Build. Struct., Barcelona, Spain, 554–562.
  • Kou, S.C.; Poon, C.S.; Dixon, C. (2007) Influence of fly ash as cement replacement on the properties of recycled aggregate concrete. J. Mater. Civ. Eng. 19 [9], 709-711. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(709)
  • Kou, S.; Poon, C.; Lam, L.; Chan, D. (2004) Hardened properties of recycled aggregate concrete prepared with fly ash. in: eds. In: Limbachiya MC & Roberts JJ (Ed.), Proc. Int. Conf. Sustain. Waste Manag. Recycl. Challenges Oppor., London, UK, 189–197.
  • Kou, S.; Poon, C.; Agrela, F. (2011) Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cem. Concr. Compos. 33 [8], 788–795. https://doi.org/10.1016/j.cemconcomp.2011.05.009
  • Moon, D.; Moon, H.; Nagataki, S.; Hisada, M.; Saeki, T. (2002) Improvement on the qualities of recycled aggregate concrete containing super fine mineral admixtures. in: E. In: Kyokai PK & Kyokai NK (Ed.), Proc. 1st Fib Congr., Osaka, Japan, 113–118. PMid:12204432
  • Ann, K.Y.; Moon, H.Y.; Kim, Y.B.; Ryou, J. (2008) Durability of recycled aggregate concrete using pozzolanic materials. Waste Manag. 28, 993–999. https://doi.org/10.1016/j.wasman.2007.03.003 PMid:17475467
  • Berndt, M.L. (2009) Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Constr. Build. Mater. 23 [7], 2606–2613. https://doi.org/10.1016/j.conbuildmat.2009.02.011
  • Poon, C.S.; Chan, D. (2006) Paving blocks made with recycled concrete aggregate and crushed clay brick. Constr. Build. Mater. 20 [8], 569–577. https://doi.org/10.1016/j.conbuildmat.2005.01.044
  • Kou, S.; Poon, C.; Chan, D. (2004) Properties of steam cured recycled aggregate fly ash concrete. in: E. In: Vázquez E, Hendriks C & Janssen GMT (Ed.), Int. RILEM Conf. Use Recycl. Mater. Build. Struct., Barcelona, Spain, 590–599.
  • Salem, R.M.; Burdette, E.G.; Jackson, N.M. (2003) Resistance to freezing and thawing of recycled aggregate concrete. ACI Mater. J. 100 [3], 216-221.
  • Yanagibashi, K.; Yonezawa, T.; Arakawa, K.; Yamada, M. (2002) A new concrete recycling technique for coarse aggregate regeneration process. in: eds. In: Dhir RK, Dyer TD & Halliday JE (Ed.), Proc. Int. Conf. Sustain. Concr. Constr., Scotland, UK, 511–522.
  • Merlet, J.; Pimienta, P. (1993) Mechanical and physico-chemical properties of concrete produced with coarse and fine recycled concrete aggregates. in: E. In: Lauritzen EK (Ed.), Proc. Third Int. RILEM Symp. Demolition Reuse Concr. Mason., Odense, Denmark, 400–411.
  • Van Acker, A. (1998) Recycling of concrete at a precast concrete plant. in: E. In: Dhir RK, Henderson NA & Limbachiya MC (Ed.), Proc. Int. Symp. Sustain. Constr. Use Recycl. Concr. Aggreg., London, UK, 321–332.
  • Hosokawa, Y. (1999) Concrete products using fine aggregate recycled from waste concrete products. in: 8th Int. Conf. Durab. Build. Mater. Components, In: Lacasse MA & Vainer DJ, Otawa, canada, 475–484.
  • Gokce, A.; Nagataki, S.; Saeki, T.; Hisada, M. (2004) Freezing and thawing resistance of air-entrained concrete incorporating recycled coarse aggregate: The role of air content in demolished concrete. Cem. Concr. Res. 34 [5], 799–806. https://doi.org/10.1016/j.cemconres.2003.09.014
  • Nagataki, S.; Lida, K. (2001) Recycling of demolished concrete. in: E. In: Malhotra VM (Ed.), Fifth CANMET/ACI Int. Conf. Recent Adv. Concr. Technol., Singapore, 1–20.
  • Zaharieva, R.; Buyle-Bodin, R.; Wirquin, E. (2004) Frost resistance of recycled aggregate concrete. Cem. Concr. Res. 34 [10], 1927–1932. https://doi.org/10.1016/j.cemconres.2004.02.025
  • Al-Attar, T.S.; Al-Khateeb, A.M.; Bachai, A.H. (2006) Behavior of High Performance Concrete Exposed to Internal Sulfate Attack (Gypsum-Contaminated Aggregate). in: Earth & Sp. 2006, American Society of Civil Engineers, Reston, VA, 1–6.
  • Tovar-Rodríguez, G.; Barra, M.; Pialarissi, S.; Aponte, D.; Vázquez, E. (2013) Expansion of mortars with gypsum contaminated fine recycled aggregates. Constr. Build. Mater. 38, 1211–1220. https://doi.org/10.1016/j.conbuildmat.2012.09.059
  • Lee, S.T.; Moon, H.Y.; Swamy, R.N.; Kim, S.S.; Kim, J.P. (2005) Sulfate Attack of Mortars Containing Recycled Fine Aggregates. ACI Mater. J. 102 [4], 224–230.
  • Lee, S.-T.; Swamy, R.N.; Kim, S.-S.; Park, Y.-G. (2008) Durability of Mortars Made with Recycled Fine Aggregates Exposed to Sulfate Solutions. J. Mater. Civ. Eng. 20 [1], 63–70. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:1(63)
  • Dhir, R.; McCarthy, M.; Halliday, J.; Tang, M. (2005) ASR testing on recycled aggregates guidance on alkali limits and reactivity.
  • ASTM-C1260 (2014) Standard test method for potential alkali reactivity of aggregates (mortar-bar method), 5p.
  • Desmyter, J.; Blockmans, S. (2000) Evaluation of different measures to reduce the risk of alkali silica reaction in recycled aggregate concrete. in: Proc. 11th Int. Conf. Alkali-Aggregate React. Concr. Canada, 603–612.
  • Etxeberria, M.; Vázquez, E.; Vázquez, E. (2010) Reacción álcali sílice en el hormigón debido al mortero adherido del árido reciclado. Mater. Construcc. 60 [297], 47–58. https://doi.org/10.3989/mc.2010.46508
  • Fonseca, N.; de Brito, J.; Evangelista, L. (2011) The influence of curing conditions on the mechanical performance of concrete made with recycled concrete waste. Cem. Concr. Compos. 33 [6], 637–643. https://doi.org/10.1016/j.cemconcomp.2011.04.002
  • Lotfi, S.; Deja, J.; Rem, P.; Mróz, R.; van Roekel, E.; van der Stelt, H. (2014) Mechanical recycling of EOL concrete into high-grade aggregates. Resour. Conserv. Recycl. 87, 117–125. https://doi.org/10.1016/j.resconrec.2014.03.010
  • Lotfi, S.; Eggimann, M.; Wagner, E.; Mróz, R.; Deja, J. (2015) Performance of recycled aggregate concrete based on a new concrete recycling technology. Constr. Build. Mater. 95, 243–256. https://doi.org/10.1016/j.conbuildmat.2015.07.021
  • Poon, C.S.; Lam, C.S. (2008) The effect of aggregate-to-cement ratio and types of aggregates on the properties of pre-cast concrete blocks. Cem. Concr. Compos. 30 [4], 283–289. https://doi.org/10.1016/j.cemconcomp.2007.10.005
  • Soares, D.; de Brito, J.; Ferreira, J.; Pacheco, J. (2014) Use of coarse recycled aggregates from precast concrete rejects: Mechanical and durability performance. Constr. Build. Mater. 71, 263–272. https://doi.org/10.1016/j.conbuildmat.2014.08.034
  • Sadati, S.; Khayat, K.H. (2016) Field performance of concrete pavement incorporating recycled concrete aggregate. Constr. Build. Mater. 126, 691–700. https://doi.org/10.1016/j.conbuildmat.2016.09.087
  • Zaetang, Y.; Sata, V.; Wongsa, A., Chindaprasirt, P. (2016) Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate. Constr. Build. Mater. 111, 15–21. https://doi.org/10.1016/j.conbuildmat.2016.02.060
  • EN-1338 (2003) Concrete paving blocks - Requirements and test methods, 76p.
  • Guerra, M.; Ceia, F.; De Brito, J.; Júlio, E. (2014) Anchorage of steel rebars to recycled aggregates concrete. Constr. Build. Mater. 72, 113–123. https://doi.org/10.1016/j.conbuildmat.2014.08.081
  • Güneyisi, E.; Geso?lu, M.; Kareem, Q.; ?pek, S. (2016) Effect of different substitution of natural aggregate by recycled aggregate on performance characteristics of pervious concrete. Mater. Struct. 49 [1-2], 521–536. https://doi.org/10.1617/s11527-014-0517-y