Sobre la aplicacion del "Cálculo Estocastico" en las Matematicas Economico-Financiero-Actuariales

  1. Villalón, Julio G. 3
  2. Rodríguez Ruz, Julian 1
  3. Seijas, J. Antonio 2
  1. 1 Universidad Nacional de Educación a Distancia
    info

    Universidad Nacional de Educación a Distancia

    Madrid, España

    ROR https://ror.org/02msb5n36

  2. 2 Universidade da Coruña
    info

    Universidade da Coruña

    La Coruña, España

    ROR https://ror.org/01qckj285

  3. 3 Universidad de Valladolid
    info

    Universidad de Valladolid

    Valladolid, España

    ROR https://ror.org/01fvbaw18

Journal:
Anales de ASEPUMA

ISSN: 2171-892X

Year of publication: 2017

Issue: 25

Type: Article

More publications in: Anales de ASEPUMA

Abstract

Esta ponencia se ha escrito como una referencia al Calculo Estocastico o Calculo It^o aplicado al campo economico- nanciero-actuarial en dos partes relativas a: Las ma- tematicas economico nancieras y las matematicas actuariales. Por lo que se re ere a la primera parte, tratamos de dar una presentacion moderna de algunos modelos usados en la \Financiera Estocastica" comenzando con el fundamental desarrollo de Black-Scholes y Merton a comienzos de 1970. Con relacion a la Ciencia Actuarial, diremos que mostro rudimentos del \calculo estocastico" hace mas de un siglo con las ecuaciones diferenciales para las reservas de una poliza de seguros obtenidas por Thiele en 1875 y para la pro- babilidad de ruina de una empresa de seguros, Lundberg en 1903, cuando la nocion de \procesos estocasticos" aun no se haba establecido de forma precisa.

Bibliographic References

  • Arrow, K., Hildebrandt, W. Intrilligator, D. y Sonnenschein, M. (eds) (1991). Handbook of Mathematical Economics. Elsevier Science Publishers.
  • Bachelier, L. (1900). Th´eorie de la sp´eculation. Gauthier-Villars.
  • Bayer, H. (2001). Measure and Integration Theory. De Gruyter.
  • Bensoussan, A. (1984). On the theory of option pricing. Acta Aplicadae Mathematica. Springer.
  • Black, F. y Scholes, M. (1973). “The pricing of options and corporate liabilities”. Journal of Political Economy, 81, pp. 637–654. Borch, K. (1962). “Equilibrium in a Reinsurance Market”. Econometrica, 30 (3), pp. 424–444.
  • Chug, K. L. y Williams, R. (1990). Introduction to stochastic integration. Brikhauser.
  • Cox, J., Ross, S. y Rubisten, N. (1979). “Option Pricing: a simplified approach”. Journal of Financial Economics, 7, pp. 229–263.
  • Cramer, H. (1969). “Historical review of Filip Lundberg’s works on risk theory”. Scandinavian Actuarial Journal, Supplement 3, pp. 6–12.
  • Dana, R. A. (2002). Stochastic dominance, individual decision making and equilibrium asset pricing. Universit´e Paris-Dauphine.
  • Dana, R. A. (2005). “A representation result for concave Schur concave functions”. Mathematical Finance, 15, pp. 613–634.
  • Delbaen, F. y Schachermeyer, W. (1994). “A general version of the fundamental theorem of asset pricing”. Mathematische Annalen, 300(1), pp. 463–520.
  • Delbaen, F. y Schachermeyer, W. (1998). “The fundamental theorem of asset pricing for unbounded stochastic processes”. Mathematische Annalen, 312(2), pp. 215–250.
  • Denneberg, D. (1990). “Distorted probabilities and insurance premiums”. Methods of Operations Research, 63, pp. 3–5.
  • Duffie, D. (1996). Dynamic Asset Pricing Theory. 2Nd Ed. Princenton. NJ. Elliot, R. y Kopp, P. (1999). Mathematics of Financial Markets. Springer
  • Follmer, H. (1981). “Calculo d’Itˆo sans probabilit´e”. Seminaire de Proba- ¨bilit´e XV. Springer Lecture Notes 850. pp. 143–150.
  • Follmer, H. (1998). “Vom Leibniz-Kalk¨ul zur stochastischen Analysis: Reines ¨und Angewandtes aus der Mathematik zuf¨alliger Schwankungen”. Leopoldina (R.3), 43, pp. 249-257.
  • Follmer, H. y Sondermann, D. (1986). ”Hedging of nonredundant con- ¨ tingent claims”. Contributions to Mathematical Economics (W. Hildenbrand and A. Mas-Colell, eds.), pp. 205–223.
  • Gerber H. U. (1979). An introduction to mathematical risk theory (No. 8). SS Huebner Foundation for Insurance Education, Wharton School, University of Pennsylvania.
  • Hull, I. (2002). “Options, futures and other derivatives”. 6th Edition. PrenticeHall. London.
  • Karatzas, I. (1988). “On the pricing of American options”. Applied mathematics & optimization, 17(1), pp. 37–60.
  • Karatzas, I. y Shreve, S. (1998). Methods of Mathematical Finance. Springer.
  • Lamberton, D. y Lapeyre, B. (1995). Introduction to Stochastic Calculus Applied to Finance. Chapman & Hall. London
  • Merton, R. (1973). “Theory of rational option pricing”. Bell Journal of Economics Managament Science. 4. pp. 141–183.
  • Moller, C. M. (1995). “Stochastic differential equations for ruin probabilities”. Journal of Applied Probability, 32(1), pp. 74–89.
  • Norberg, R. (1995). “A time-continuous markov chain interest model with application to consumer”. Applied Stochastic Models and Data Analysis, 11(3), pp. 245–256.
  • Norberg, R. (1999). “Ruin problems with assets and liabilities of diffusion type”. Stochastic Processes and Their Applications, 81(2), 255-269.
  • Pliska, S.R. (1997). Introduction to Mathematical Finance. Discrete Time Models. Blackwell.
  • Von Neumann, J. y Morgenstein, O. (1947). Theory of Games and Economic Behavior. Princeton.