Sobre la aplicacion del "Cálculo Estocastico" en las Matematicas Economico-Financiero-Actuariales
- Villalón, Julio G. 3
- Rodríguez Ruz, Julian 1
- Seijas, J. Antonio 2
-
1
Universidad Nacional de Educación a Distancia
info
-
2
Universidade da Coruña
info
-
3
Universidad de Valladolid
info
ISSN: 2171-892X
Year of publication: 2017
Issue: 25
Type: Article
More publications in: Anales de ASEPUMA
Abstract
The attached paper has been written in reference to \stochastic calculus" or \It^o Calculus" applied to the actuarial nance economics relative to two separate sides. The rst is focused on nancial mathematics in economics and we attempt to present a modern look at some of the models use in \stochastic nance" starting with key principles of Black- Scholes and Merton in the early 70's. In reference to Actuarial Science o age-continuous actuarial mathematics, we see early signs in the \stochastic calculus" over a century ago in those dierential equations developed for the mathematical reserve of an insurance annuity, rst proposed by Thiele in 1875 and later on for risk or ruin theory for insurance companies proposed by Lundberg in 1903 when stochastic theory had not even been formalized as such.
Bibliographic References
- Arrow, K., Hildebrandt, W. Intrilligator, D. y Sonnenschein, M. (eds) (1991). Handbook of Mathematical Economics. Elsevier Science Publishers.
- Bachelier, L. (1900). Th´eorie de la sp´eculation. Gauthier-Villars.
- Bayer, H. (2001). Measure and Integration Theory. De Gruyter.
- Bensoussan, A. (1984). On the theory of option pricing. Acta Aplicadae Mathematica. Springer.
- Black, F. y Scholes, M. (1973). “The pricing of options and corporate liabilities”. Journal of Political Economy, 81, pp. 637–654. Borch, K. (1962). “Equilibrium in a Reinsurance Market”. Econometrica, 30 (3), pp. 424–444.
- Chug, K. L. y Williams, R. (1990). Introduction to stochastic integration. Brikhauser.
- Cox, J., Ross, S. y Rubisten, N. (1979). “Option Pricing: a simplified approach”. Journal of Financial Economics, 7, pp. 229–263.
- Cramer, H. (1969). “Historical review of Filip Lundberg’s works on risk theory”. Scandinavian Actuarial Journal, Supplement 3, pp. 6–12.
- Dana, R. A. (2002). Stochastic dominance, individual decision making and equilibrium asset pricing. Universit´e Paris-Dauphine.
- Dana, R. A. (2005). “A representation result for concave Schur concave functions”. Mathematical Finance, 15, pp. 613–634.
- Delbaen, F. y Schachermeyer, W. (1994). “A general version of the fundamental theorem of asset pricing”. Mathematische Annalen, 300(1), pp. 463–520.
- Delbaen, F. y Schachermeyer, W. (1998). “The fundamental theorem of asset pricing for unbounded stochastic processes”. Mathematische Annalen, 312(2), pp. 215–250.
- Denneberg, D. (1990). “Distorted probabilities and insurance premiums”. Methods of Operations Research, 63, pp. 3–5.
- Duffie, D. (1996). Dynamic Asset Pricing Theory. 2Nd Ed. Princenton. NJ. Elliot, R. y Kopp, P. (1999). Mathematics of Financial Markets. Springer
- Follmer, H. (1981). “Calculo d’Itˆo sans probabilit´e”. Seminaire de Proba- ¨bilit´e XV. Springer Lecture Notes 850. pp. 143–150.
- Follmer, H. (1998). “Vom Leibniz-Kalk¨ul zur stochastischen Analysis: Reines ¨und Angewandtes aus der Mathematik zuf¨alliger Schwankungen”. Leopoldina (R.3), 43, pp. 249-257.
- Follmer, H. y Sondermann, D. (1986). ”Hedging of nonredundant con- ¨ tingent claims”. Contributions to Mathematical Economics (W. Hildenbrand and A. Mas-Colell, eds.), pp. 205–223.
- Gerber H. U. (1979). An introduction to mathematical risk theory (No. 8). SS Huebner Foundation for Insurance Education, Wharton School, University of Pennsylvania.
- Hull, I. (2002). “Options, futures and other derivatives”. 6th Edition. PrenticeHall. London.
- Karatzas, I. (1988). “On the pricing of American options”. Applied mathematics & optimization, 17(1), pp. 37–60.
- Karatzas, I. y Shreve, S. (1998). Methods of Mathematical Finance. Springer.
- Lamberton, D. y Lapeyre, B. (1995). Introduction to Stochastic Calculus Applied to Finance. Chapman & Hall. London
- Merton, R. (1973). “Theory of rational option pricing”. Bell Journal of Economics Managament Science. 4. pp. 141–183.
- Moller, C. M. (1995). “Stochastic differential equations for ruin probabilities”. Journal of Applied Probability, 32(1), pp. 74–89.
- Norberg, R. (1995). “A time-continuous markov chain interest model with application to consumer”. Applied Stochastic Models and Data Analysis, 11(3), pp. 245–256.
- Norberg, R. (1999). “Ruin problems with assets and liabilities of diffusion type”. Stochastic Processes and Their Applications, 81(2), 255-269.
- Pliska, S.R. (1997). Introduction to Mathematical Finance. Discrete Time Models. Blackwell.
- Von Neumann, J. y Morgenstein, O. (1947). Theory of Games and Economic Behavior. Princeton.