A review on political analysis and social media

  1. David Vilares
  2. Miguel A. Alonso
Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2016

Número: 56

Páginas: 13-24

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Resumen

En los países democráticos, conocer la intención de voto de los ciudadanos y las valoraciones de los principales partidos y líderes políticos es de gran interés tanto para los propios partidos como para los medios de comunicación y el público en general. Para ello se han utilizado tradicionalmente costosas encuestas personales. El auge de las redes sociales, principalmente Twitter, permite pensar en ellas como una alternativa barata a las encuestas. En este trabajo, revisamos la bibliografía científica más relevante en este ámbito, poniendo especial énfasis en el caso español.

Referencias bibliográficas

  • Aragón, P., K.E. Kappler, A. Kaltenbrunner, D. Laniado, and Y. Volkovich. 2013. Communication dynamics in Twitter during political campaigns: The case of the 2011 Spanish national election. Policy and Internet, 5(2):183–206, June.
  • Barberá, P. 2012. A new measure of party identification in Twitter. Evidence from Spain. In 2nd Annual General Conference of the European Political Science Association(EPSA), Berlin, June. EPSA.
  • Barberá, P. and G. Rivero. 2012. ¿Un tweet, un voto? Desigualdad en la discusión poĺıtica en Twitter. In I Congreso Internacional en Comunicación Poĺıtica y Estrategias de Campaña, Madrid, July. ALICE.
  • Bermingham, A. and A.F. Smeaton. 2011. On using Twitter to monitor political sentiment and predict election results. In S. Bandyopadhyay and M. Okumurra, editors, Proceedings of the Workshop on Sentiment Analysis where AI meets Psychol ogy (SAAIP 2011), pages 2–10, Chiang Mai, Thailand, November. Asian Federation of Natural Language Processing.
  • Borondo, J., A.J. Morales, J.C. Losada, and R.M. Benito. 2012. Characterizing and modeling an electoral campaign in the context of Twitter: 2011 Spanish presidential election as a case study. AIP Chaos, 22(2):023138, June.
  • Broersma, M. and T. Graham. 2012. Social media as beat. tweets as a news source during the 2010 British and Dutch elections. Journalism Practice, 6(3):403–419.
  • Caldarelli, G., A. Chessa, F. Pammolli, G. Pompa, M. Puliga, M. Riccaboni, and G. Riotta. 2014. A multi-level geographical study of Italian political elections from Twitter data. PLOS ONE, 9(5):e95809, May.
  • Chung, J. and E. Mustafaraj. 2011. Can collective sentiment expressed on Twitter predict political elections? In Proceedings of the Twenty-Fifth Conference on Artificial Intelligence (AAAI-11), pages 1170– 1171, San Francisco, CA, August. AAAI.
  • Congosto, M.L., M. Fernández, and E. Moro Egido. 2011. Twitter y poĺıtica: Información, opinión y ¿predicción? Cuadernos de Comunicación Evoca, 4:11–15.
  • Conover, M.D, B. Gonçalves, A. Flammini, and F. Menczer. 2012. Partisan asymmetries in online political activity. EPJ Data Science, 1(1):Article: 6, December.
  • Conover, M.D., J. Ratkiewicz, M. Francisco, B. Gonçalves, A. Flammini, and F. Menczer. 2011. Political polarization on Twitter. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM 2011), pages 89–96, Barcelona, Spain, July. AAAI.
  • Contractor, D. and T.A. Faruquie. 2013. Understanding election candidate approval ratings using social media data. In WWW 2013 Companion, pages 189–190, Rio de Janeiro, May. ACM Press.
  • Cotelo, J.M., F. Cruz, F.J. Ortega, and J.A. Troyano. 2015. Explorando Twitter mediante la integración de información estructurada y no estructurada. Procesamiento del Lenguaje Natural, 55:75–82, September.
  • Criado, J.I., G. Mart́ınez-Fuentes, and A. Silván. 2013. Twitter en campaña: las elecciones municipales españolas de 2011. Revista de investigaciones Poĺıticas y Sociológicas, 12(1):93–113.
  • Deltell, L. 2012. Estrategias de comunicación poĺıtica en las redes sociales durante la campaña electoral del 2011 en España: el caso de eQuo. In II Jornadas de la Asociación Madrileña de Socioloǵıa, Madrid, March.
  • Deltell, L., F. Claes, and J.M. Osteso. 2013. Predicción de tendencia poĺıtica por Twitter: Elecciones andaluzas 2012. Ambitos: Revista internacional de comunicación, 22:91–100.
  • DiGrazia, J., K. McKelvey, J. Bollen, and F. Rojas. 2013. More tweets, more votes: Social media as a quantitative indicator of political behavior. PLOS ONE, 8(11):e79449, November.
  • Effing, R., J. van Hillegersberg, and T. Huibers. 2011. Social media and political participation: Are Facebook, Twitter and YouTube democratizing our political systems? In E. Tambouris, A. Macintosh, and H. de Bruijn, editors, Electronic Participation, volume 6847 of Lecture Notes in Computer Science. Springer, Berlin and Heidelberg, pages 25–35.
  • Fink, C., N. Bos, A. Perrone, E. Liu, and J. Kopecky. 2013. Twitter, public opinion, and the 2011 Nigerian presidential election. In Proceedings of SocialCom / PASSAT / BigData / EconCom / BioMedCom 2013 (SocialCom 2013), pages 311– 320, Washington, D.C., USA, September. IEEE Computer Society.
  • Gamallo, P., M. Garćıa, and S. Fernández Lanza. 2013. TASS: A naive-Bayes strategy for sentiment analysis on Spanish tweets. In A. Dı́az Esteban, I. Alegŕıa Loinaz, and J. Villena Román, editors, XXIX Congreso de la Sociedad Española de Procesamiento de Lenguaje Natural (SEPLN 2013). TASS 2013 Workshop on Sentiment Analysis at SEPLN 2013, pages 126–132, Madrid, Spain, September.
  • Gaurav, M., A. Srivastava, A. Kumar, and S. Miller. 2013. Leveraging candidate popularity on Twitter to predict election outcome. In Proceedings of the 7th Workshop on Social Network Mining and Analysis (SNA-KDD 2013), page Article No. 7, Chicago, IL. ACM.
  • Gayo-Avello, D. 2011. Don’t turn social median into another ‘literay digest’ poll. Communications of the ACM, 54(10):121– 128, October.
  • Gayo-Avello, D. 2012. No, you cannot predict elections with Twitter. IEEE Internet Computing, 16(6):91–94, November/December.
  • Gayo-Avello, D., P.T. Metaxas, and E. Mustafaraj. 2011. Limits of electoral predictions using Twitter. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM 2011), pages 490–493, Barcelona, Spain, July. AAAI.
  • Golbeck, J. and D.L. Hansen. 2011. Computing political preference among Twitter followers. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI 2011), pages 1105–1108, Vancouver, BC, Canada, May. ACM.
  • Huberty, M. 2013. Multi-cycle forecasting of congressional elections with social media. In Proceedings of the 2nd workshop on Politics, elections and data (PLEAD 2013), pages 23–29, San Francisco, CA, October. ACM.
  • Jensen, M.J. and N. Anstead. 2013. Psephological investigations: Tweets, votes and unknown unknowns in the republican nomination process. Policy & Internet, 5(2):161–182, June.
  • Jungherr, A., P. Jürgens, and H. Schoen. 2012. Why the pirate party won the German election of 2009 or the trouble with predictions: A response to Tumasjan, A., Sprenger, T. O., Sander, P. G., & Welpe, I. M. “Predicting Elections With Twitter: What 140 Characters Reveal About Political Sentiment”. Social Science Computer Review,, 30(2):229–234.
  • Lampos, V., D. Preoţiuc-Pietro, and T. Cohn. 2013. A user-centric model of voting intention from social media. In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, pages 993–1003, Sofia, Bulgaria, August. ACL.
  • Lassen, D.S. and A.R. Brown. 2011. Twitter: The electoral connection? Social Sience Computer Review, 29(4):419–436, November.
  • Livne, A., M.P. Simmons, E. Adar, and L.A. Adamic. 2011. The party is over here: Structure and content in the 2010 election. In Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media (ICWSM 2011), pages 201– 208, Barcelona, Spain, July. AAAI.
  • Makazhanov, A. and D. Rafiei. 2013. Predicting political preference of Twitter users. In Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013), pages 298–305, Niagara, ON, Canada, August. ACM.
  • Metaxas, P.T., E. Mustafaraj, and D. GayoAvello. 2011. How (not) to predict elections. In Proceedings of 2011 IEEE International Conference on Privacy, Security, Risk and Trust and IEEE International Conference on Social Computing — PASSAT/SocialCom 2011—, pages 165– 171, Boston, Massachusetts, USA, October. IEEE Computer Society.
  • Mohammad, S.M., X. Zhu, S. Kiritchenko, and J. Martin. 2015. Sentiment, emotion, purpose, and style in electoral tweets. Information Processing and Management, 51(4):480–499, July.
  • Monti, C., A. Rozza, G. Zapella, M. Zignani, A. Arvidsson, and E. Colleoni. 2013. Modelling political disaffection from Twitter data. In Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM 2013), page Article No. 3, Chicago, IL, USA. ACM.
  • Nooralahzadeh, F., V. Arunachalam, and C. Chiru. 2013. 2012 presidential elections on Twitter — an analysis of how the US and French election were reflected in tweets. In I. Dumitrache, A.M. Florea, and F. Pop, editors, Proceedings of the 19th International Conference on Control Systems and Computer Science (CSCS 2013), pages 240–246, Bucharest, Romania, May. IEEE Computer Society.
  • O’Connor, B., R. Balasubramanyan, B. Routledge, and N.A. Smith. 2010. From tweets to polls: Linking text sentiment to public opinion time series. In W.W. Cohen and S. Gosling, editors, Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media (ICWSM 2010), pages 122–129, Washington, DC, May. AAAI.
  • Park, S. 2015. Sentiment classification using sociolinguistic clusters. In JVillenaRomán, J. Garćıa-Morera, M.Á. GarćıaCumbreras, E. Mart́ınez-Cámara, M.T. Mart́ın-Valdivia, and L.A. Ureña-López, editors, TASS 2015 Workshop on Sentiment Analysis at SEPLN, volume 1397 of CEUR Workshop Proceedings, pages 99– 104, Alicante, Spain, September. CEURWS.org.
  • Peña-López, I., M. Congosto, and P. Aragón. 2011. Spanish indignados and the evolution of the 15M: Towards networked parainstitutions. In J. Balcells, A. Cerrilloi-Mart́ınez, M. Peguera, I. Peña-López, M.J. Pifarré, and M. Vilasau, editors, Big Data: Challenges and Opportunities. Proceedings od the 9th International Conference on Internet, Law & Politics, pages 359–386, Barcelona, June. UOC-Huygens Editorial.
  • Pennacchiotti, M. and A.-M. Popescu. 2011. Democrats, Republicans and Starbucks afficionados: User classification in Twitter. In KDD’11. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 430–436, San Diego, CA, USA, August. ACM.
  • Pennebaker, J.W., M.E. Francis, and R.J. Booth. 2001. Linguistic inquiry and word count: LIWC 2001. Lawrence Erlbaum Associates, Mahway.
  • Pla, F. and L.-F. Hurtado. 2013. ELiRFUPV en TASS-2013: Análisis de sentimientos en Twitter. In A. Dı́az Esteban, I. Alegŕıa Loinaz, and J. Villena Román, editors, XXIX Congreso de la Sociedad Española de Procesamiento de Lenguaje Natural (SEPLN 2013). TASS 2013 Workshop on Sentiment Analysis at SEPLN 2013, pages 220–227, Madrid, Spain, September.
  • Prasetyo, N.D. and C. Hauff. 2015. Twitterbased election prediction in the developing world. In Proceedings of the 26th ACM Conference on Hypertext and Social Media (HT 2015), Middle East Technical University Northern Cyprus Campus, Cyprus, September. ACM.
  • Razzaq, M.A., A.M. Qamar, and H.S.M. Bilal. 2014. Prediction and analysis of pakistan election 2013 based on sentiment analysis. In X. Wu, M. Ester, and G. Xu, editors, Proceedings of the 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), pages 700–703, Beijing, China, August. IEEE.
  • Romero-Frías, E. and L. Vaughan. 2010. European political trends viewed through patterns of web linking. Journal of the American Society for Information Science and Technology, 61(10):2109–2121, October.
  • Romero-Frías, E. and L. Vaughan. 2012. Exploring the relationships between media and political parties through web hyperlink analysis: The case of Spain. Journal of the American Society for Information Science and Technology, 63(5):967– 976, May.
  • Thelwall, M., K. Buckley, and G. Paltoglou. 2012. Sentiment strength detection for the social web. Journal of the American Society for Information Science and Technology, 63(1):163–173, January.
  • Tumasjan, A., T.O. Sprenger, P.G. Sandner, and I.M. Welpe. 2010. Predicting elections in Twitter: What 140 characters reveal about political sentiment. In W.W. Cohen and S. Gosling, editors, Proceedings of the Fourth International AAAI Conference on Weblogs and Social Media (ICWSM 2010), pages 178–185, Washington, DC, May. AAAI.
  • Vilares, D., Y. Doval, M.A. Alonso, and C. Gómez-Rodríguez. 2015. LyS at TASS 2015: Deep learning experiments for sentiment analysis on Spanish tweets. In J. Villena-Román, J. García-Morera, M.Á. Garćıa-Cumbreras, E. Mart́ınez-Cámara, M.T. Martín-Valdivia, and L.A. UreñaLópez, editors, TASS 2015 Workshop on Sentiment Analysis at SEPLN, volume 1397 of CEUR Workshop Proceedings, pages 47–52, Alicante, Spain, September. CEUR-WS.org.
  • Vilares, D., M. Thelwall, and M.A. Alonso. 2015. The megaphone of the people? Spanish SentiStrength for real-time analysis of political tweets. Journal of Information Science, 41(6):799–813, December.
  • Villena-Román, J. and J. García-Morera. 2013. TASS 2013 — workshop on sentiment analysis at SEPLN 2013: An overview. In A. Díaz Esteban, I. Alegŕıa Loinaz, and J. Villena Román, editors, XXIX Congreso de la Sociedad Española de Procesamiento de Lenguaje Natural (SEPLN 2013). TASS 2013 Workshop on Sentiment Analysis at SEPLN 2013, pages 112–125, Madrid, Spain, September.
  • Villena-Román, J., J. Garćıa-Morera, M.Á. Garćıa-Cumbreras, E. Mart́ınez-Cámara, M.T. Mart́ın-Valdivia, and L.A. UreñaLópez. 2015. Overview of TASS 2015. In J. Villena-Román, J. Garćıa-Morera, M.Á. Garćıa-Cumbreras, E. Mart́ınezCámara, M. T. Mart́ın-Valdivia, and L. A. Ureña-López, editors, TASS 2015 Workshop on Sentiment Analysis at SEPLN, volume 1397 of CEUR Workshop Proceedings, pages 13–21, Alicante, Spain, September. CEUR-WS.org.
  • Wang, H., D. Can, A. Kazemzadeh, F. Bar, and S. Narayanan. 2012. A system for real-time Twitter sentiment analysis of 2012 U.S. presidential election cycle. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, pages 115–120, Jeju, Republic of Korea, July. ACL.