Optimizing Planar 2-Planar Parsers with MaltOptimizer

  1. Ballesteros, Miguel
  2. Gómez Rodríguez, Carlos
  3. Nivre, Joakim
Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2012

Número: 49

Páginas: 171-178

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Resumen

MaltOptimizer es una herramienta capaz de proporcionar una optimizaci on para modelos generados mediante MaltParser. Los analizadores de dependencias actuales requieren una completa con guracion para obtener resultados a la altura del estado del arte, y para ello es necesario un conocimiento especializado. Los analizadores Planar y 2-Planar son dos algoritmos diferentes y de reciente incorporaci on en MaltParser. En el presente artculo presentamos como estos dos analizadores pueden incluirse en MaltOptimizer comparandolos con el resto de familias de algoritmos incluidas en MaltParser, y como se puede de nir una busqueda y selecci on de atributos (o \features") usando el propio sistema para estos dos parsers. Los experimentos muestran que usando estos metodos podemos mejorar la precision obtenida hasta un porcentaje absoluto del 8 por ciento (labeled attachment score) si lo comparamos con una con guracion basica de estos 2 parsers.

Referencias bibliográficas

  • Ballesteros, Miguel and Joakim Nivre. 2012a. MaltOptimizer: A System for MaltParser Optimization. In Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC).
  • Ballesteros, Miguel and Joakim Nivre. 2012b. MaltOptimizer: An Optimization Tool for MaltParser. In Proceedings of the System Demonstration Session of the Thirteenth Conference of the European Chapter of the Association for Computational Linguistics (EACL).
  • Beuck, Niels, Arne Köhn, and Wolfgang Menzel. 2011. Incremental parsing and the evaluation of partial dependency analyses. In Proceedings of the Int. Conference on Dependency Linguistics (Depling 2011).
  • Buchholz, Sabine and Erwin Marsi. 2006. CoNLL-X shared task on multilingual dependency parsing. In Proceedings of the 10th Conference on Computational Natural Language Learning (CoNLL), pages 149-164.
  • Chang, Chih-Chung and Chih-Jen Lin, 2001. LIBSVM: A Library for Support Vector Machines. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm.
  • Covington, Michael A. 2001. A fundamental algorithm for dependency parsing. In Proceedings of the 39th Annual ACM Southeast Conference, pages 95-102.
  • Daelemans, Walter, Véronique Hoste, Fien De Meulder, and Bart Naudts. 2003. Combined optimization of feature selection and algorithm parameters in machine learning of language. In Nada Lavrac,
  • Dragan Gamberger, Hendrik Blockeel, and Ljupco Todorovski, editors, Machine Learning: ECML 2003, volume 2837 of Lecture Notes in Computer Science. Springer.
  • Fan, R.-E., K.-W. Chang, C.-J. Hsieh, X.- R. Wang, and C.-J. Lin. 2008. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9:1871-1874.
  • Gómez-Rodríguez, Carlos and Daniel Fernández-González. 2012a. Dependencias no dirigidas para el análisis basado en transiciones. Procesamiento del Lenguaje Natural, 48:43-50.
  • Gómez-Rodríguez, Carlos and Daniel Fernández-González. 2012b. Dependency parsing with undirected graphs. In Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics (EACL), pages 66-76, Avignon, France, April. Association for Computational Linguistics.
  • Gómez-Rodríguez, Carlos and Joakim Nivre. 2010. A transition-based parser for 2-planar dependency structures. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics (ACL), pages 1492-1501.
  • Kool, Anne, Jakub Zavrel, andWalter Daelemans. 2000. Simultaneous feature selection and parameter optimization for memory-based natural language processing. In A. Feelders, editor, BENELEARN 2000. Proceedings of the Tenth Belgian- Dutch Conference on Machine Learning. Tilburg University, Tilburg, pages 93-100.
  • Krivanek, Julia and Detmar Meurers. 2011. Comparing rule-based and data-driven dependency parsing of learner language. In Proceedings of the Int. Conference on Dependency Linguistics (Depling 2011).
  • Nilsson, Peter and Pierre Nugues. 2010. Automatic discovery of feature sets for dependency parsing. In COLING, pages 824-832.
  • Nivre, Joakim. 2003. An eficient algorithm for projective dependency parsing. In Proceedings of the 8th International Workshop on Parsing Technologies (IWPT), pages 149-160.
  • Nivre, Joakim. 2008. Algorithms for deterministic incremental dependency parsing. Computational Linguistics, 34:513-553.
  • Nivre, Joakim. 2009. Non-projective dependency parsing in expected linear time. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP (ACL-IJCNLP), pages 351-359.
  • Nivre, Joakim and Johan Hall. 2010. A quick guide to MaltParser optimization. Technical report, maltparser.org.
  • Nivre, Joakim, Johan Hall, Sandra Kübler, Ryan McDonald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret. 2007. The CoNLL 2007 shared task on dependency parsing. In Proceedings of the CoNLL Shared Task of EMNLP-CoNLL 2007, pages 915-932.
  • Nivre, Joakim, Johan Hall, and Jens Nilsson. 2006. Maltparser: A data-driven parsergenerator for dependency parsing. In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC), pages 2216-2219.
  • Nivre, Joakim, Johan Hall, Jens Nilsson, G. Eryigit, and S. Marinov. 2006. Labeled pseudo-projective dependency parsing with support vector machines. In CoNLL-X.
  • Nivre, Joakim, Marco Kuhlmann, and Johan Hall. 2009. An improved oracle for dependency parsing with online reordering. In Proceedings of the 11th International Conference on Parsing Technologies (IWPT'09), pages 73-76.
  • Nivre, Joakim and Jens Nilsson. 2005. Pseudo-projective dependency parsing. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL), pages 99-106.
  • Ott, Niels and Ramon Ziai. 2010. Evaluating dependency parsing performance on German learner language. In Proceedings of the Ninth International Workshop on Treebanks and Linguistic Theories (TLT9), NEALT Proceeding Series.
  • Prudhvi Kosaraju, Sruthilaya Reddy Kesidi, Vinay Bhargav Reddy Ainavolu and Puneeth Kukkadapu. 2010. Experiments on indian language dependency parsing. In ICON-2010 Tools Contest on Indian Language Dependency Parsing. Kharagpur, India.
  • Yli-Jyrä, Anssi Mikael. 2003. Multiplanarity - a model for dependency structures in treebanks. In Joakim Nivre and Erhard Hinrichs, editors, TLT 2003. Proceedings of the Second Workshop on Treebanks and Linguistic Theories, volume 9 of Mathematical Modelling in Physics, Engineering and Cognitive Sciences, pages 189-200, Växjö, Sweden, 14-15 November. Växjö University Press.