Covid-19 projections for Spain using forecast combinations

  1. Vilar Fernández, J.A. 1
  2. Casal, R.F. 1
  3. Fernandez-Lozano, C. 1
  1. 1 Universidade da Coruña
    info

    Universidade da Coruña

    La Coruña, España

    ROR https://ror.org/01qckj285

Revista:
BEIO, Boletín de Estadística e Investigación Operativa

ISSN: 1889-3805

Año de publicación: 2020

Volumen: 36

Número: 2

Páginas: 99-125

Tipo: Artículo

Otras publicaciones en: BEIO, Boletín de Estadística e Investigación Operativa

Resumen

As part of the “Mathematics against coronavirus” initiative promoted by the Spanish Committee for Mathematics (CEMat), an interactive web application based on R was developed to monitor and predict the short-term behavior of relevant variables in Covid-19 spreading. For every Spanish administrative region, predictions from a variety of models and techniques provided by independent research groups were combined to generate cooperative predictions, which have been daily available on the web together with the official data from the Institute of Health Carlos III (ISCIII). Since forecast combination can improve forecasting accuracy, particularly in contexts with high uncertainty, the goal was to use the forecasts of the Spanish mathematical community to obtain more accurate and stable predictions and, eventually, report conclusions to the authorities. This article provides a general overview of the development and results of this project, motivating the use of combined forecasts and including information on the main stages of the process. © 2020 SEIO

Referencias bibliográficas

  • [1] Aiolfi, M., y Favero, C. A. (2005). Model uncertainty, thick modeling and the predictability of stock returns. Journal of Forecasting, 24(4), 233-254.
  • [2] Aiolfi, M., y Timmermann, A. (2006) Persistence in forecasting performance and conditional combination strategies. Journal of Econometrics, 135(1), 31-53.
  • [3] Armstrong, J. S. (2001). Combining forecasts. En: Principles of Forecasting: A Handbook for Researchers and Practitioners (Cap. 4), 417-439, Kluwer Academic Publishing, Dordrecht (Pa´ıses Bajos).
  • [4] Bates, J. M., y Granger, C. W. J. (1969). The Combination of Forecasts. Journal of the Operational Research Society, 20(4), 451-468.
  • [5] Claeskens, G., Magnus, J. R., Vasnev, A. L. y Wang, W. (2016). The forecast combination puzzle: A simple theoretical explanation. International Journal of Forecasting, 32(3), 754-762.
  • [6] Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5(4), 559-583.
  • [7] Clemen, R. T., y Winkler, R. L. (1986). Combining economic forecasts. Journal of Business & Economic Statistics, 4(1), 39-46.
  • [8] Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74(368), 829- 836.
  • [9] Cleveland, W. S. (1981). LOWESS: A program for smoothing scatterplots by robust locally weighted regression. The American Statistician, 35(1), 1-54.
  • [10] Cleveland, W. S., Grosse, E., y Shyu, W. M. (1992). Local regression models. En Statistical Models in S (Cap. 8). Eds. J.M. Chambers and T.J. Hastie, Wadsworth & Brooks/Cole, Pacific Grove, California, USA.
  • [11] Diebold, F. X., y Pauly, P. (1990). The use of prior information in forecast combination. International Journal of Forecasting, 6(4), 503-508.
  • [12] Elliott, G., y Timmermann, A. (2004) Optimal forecast combinations under general loss functions and forecast error distributions. Journal of Econometrics, 122(1), 47-79.
  • [13] Elliott, G., Gargano, A., y Timmermann, A. (2013) Complete subset regressions. Journal of Econometrics, 177(2), 357-373.
  • [14] Genre, V., Kenny, G., Meyler, A., y Timmermann, A. (2013). Combining expert forecasts: can anything beat the simple average? International Journal of Forecasting, 29(1), 108-121.
  • [15] Graefe, A., Armstrong, J. S., Jones, R. J., y Cuz´an, A. G. (2014). Combining forecasts: An application to elections.International Journal of Forecasting, 30(1), 43-54.
  • [16] Granger, C. W. J., y Ramanathan, R. (1984). Improved methods of combining forecasts. Journal of Forecasting, 3(2), 197-204.
  • [17] Granger, C. W. J., y Jeon, Y. (2004). Thick modeling. Economic Modelling, 21(2), 323-343.
  • [18] Hansen, B. E. (2008). Least-squares forecast averaging. Journal of Econometrics, 146(2), 342-350.
  • [19] Hsiao, C., y Wan, S. K. (2014) Is there an optimal forecast combination? Journal of Econometrics, 178(2), 294-309.
  • [20] Jose, V. R. R., y Winkler, R. L. (2008). Simple robust averages of forecasts: some empirical results. The M3-competition: Results, conclusions and implication. International Journal of Forecasting, 24(1), 163-169.
  • [21] Liang, H., Zou, G., Wan, A. T. K., y Zhang, X. (2011). Optimal weight choice for frequentist model average estimators. Journal of the American Statistical Association, 106(495), 1053-1066.
  • [22] Makridakis, S., y Hibon, M. (2000). The M3-competition: Results, conclusions and implication. International Journal of Forecasting, 16(4), 451-476.
  • [23] Marcellino, M. (2004). Forecast pooling for short time series of macroeconomic variables. Oxford Bulletin of Economic and Statistics, 66(1), 91-112.
  • [24] Newbold, P., y Granger, C. W. J. (1974) Experience with forecasting univariate time series and the combination of forecasts. Journal of the Royal Statistical Society. Series A, 137(2), 131-165.
  • [25] Smith, J., y Wallis, K. F. (2009). A simple explanation of the forecast combination puzzle. Oxford Bulletin of Economics and Statistics, 71(3), 331-355.
  • [26] Stock, J. H., y Watson, M. W. (2004). Combination forecasts of output growth in a seven-country data set. Journal of Forecasting, 23(6), 405-430.
  • [27] Timmermann, A. (2006). Forecast combinations. En: Handbook of Economic Forecasting (Cap. 4), 1, Elsevier/North-Holland, Amsterdam (Pa´ıses Bajos).
  • [28] Vul, E., y Pashler, H. (2008). Measuring the crowd within: probabilistic representations within individuals. Psychological Science, 19(7), 645-647.
  • [29] Weiss, Ch. E., Raviv, E., y Roetzer, G. (2018). Forecast combinations in R using the ForecastComb package. The R Journal, 10(2), 262-281.
  • [30] Robert L. Winkler, R. L., y Makridakis, S. (1983). The Combination of Forecasts. Journal of the Royal Statistical Society. Series A, 146(2), 150- 157.