Automatic rescaling and tuning of big data applications on container-based virtual environments

  1. Enes, Jonatan
Dirigida por:
  1. Roberto R. Expósito Codirector
  2. Juan Touriño Codirector

Universidad de defensa: Universidade da Coruña

Fecha de defensa: 14 de octubre de 2020

Tribunal:
  1. Jesús Carretero Pérez Presidente/a
  2. Guillermo L. Taboada Secretario
  3. Sabela Ramos Garea Vocal
Departamento:
  1. Ingeniería de Computadores

Tipo: Tesis

Teseo: 638382 DIALNET lock_openRUC editor

Resumen

Las aplicaciones Big Data actuales han evolucionado de forma significativa, desde flujos de trabajo basados en procesamiento por lotes hasta otros más complejos que pueden requerir múltiples etapas de procesamiento usando distintas tecnologías, e incluso ejecutándose en tiempo real. Por otra parte, para desplegar estas aplicaciones, los clusters ‘commodity’ se han reemplazado en algunos casos por paradigmas más flexibles como el Cloud, o incluso por otros emergentes como la computación ‘serverless’, requiriendo ambos paradigmas de tecnologías de virtualización. Esta Tesis propone dos entornos que proporcionan formas alternativas de realizar un análisis en profundidad y una mejor gestión de los recursos de aplicaciones Big Data desplegadas en entornos virtuales basados en contenedores software. Por un lado, el entorno BDWatchdog permite realizar un análisis de grano fino y en tiempo real en lo que respecta a la monitorización de los recursos del sistema y al perfilado del código. Por otro lado, se describe un entorno para el reescalado dinámico y en tiempo real de los recursos de acuerdo a un conjunto de políticas configurables. La primera política propuesta se centra en el reescalado automático de los recursos de los contenedores de acuerdo al uso real que las aplicaciones hacen de los mismos, proporcionando así un entorno ‘serverless’. Además, se presenta una política alternativa centrada en la gestión energética que permite implementar los conceptos de limitación y presupuesto de potencia, pudiendo aplicarse a contenedores, aplicaciones o incluso usuarios. En general, los entornos propuestos en esta Tesis tratan de resaltar el potencial de aplicar nuevas formas de analizar y ajustar los recursos de las aplicaciones Big Data desplegadas en clusters de contenedores, incluso en tiempo real. Los casos de uso que se han presentado son ejemplos de esto, demostrando que las aplicaciones Big Data pueden adaptarse a nuevas tecnologías o paradigmas sin tener que cambiar su características más intrínsecas.