Sampling and learning distance-based probability models for permutation spaces
- IRUROZQUI ARRIETA, EKHIÑE
- Borja Calvo Molinos Director
- José Antonio Lozano Alonso Director
Universidade de defensa: Universidad del País Vasco - Euskal Herriko Unibertsitatea
Fecha de defensa: 31 de outubro de 2014
- Pedro Larrañaga Múgica Presidente/a
- Alexander Mendiburu Alberro Secretario/a
- José Manuel Peña Palomar Vogal
- Concha Bielza Lozoya Vogal
- Amparo Alonso Betanzos Vogal
Tipo: Tese
Resumo
Esta tesis est¿a dedicada al aprendizaje y muestreo de los modelos de probabilidadsobre permutaciones basados en distancias. En concreto, las distancias consideradasson la ¿ de Kendall, Cayley, Hamming y Ulam. El objetivo es definire implementar operaciones eficientes. Las operaciones fundamentales para distribucionesde probabilidad son el muestreo y aprendizaje. Se han definido unao varias funciones de muestreo y aprendizaje para cada uno de los modelos consideradosy la esperanza de la distancia en todos los casos. Adem¿as, se discutesobre cada uno de ellos, su aplicaci¿on y relaciones con distintos modelos en laliteratura.Para lograr el objetivo de dar con funciones eficientes, esta tesis se enmarcano solo en el campo de la computaci¿on, si no tambi¿en en los de estad¿¿stica ycombinatoria.Las permutaciones son funciones de un conjunto de n items a ¿el mismo. Enesta tesis se usa la representaci¿on cl¿asica en la forma de un vector ordenado delos n primeros n¿umeros naturales.La literatura sobre modelos probabilicos para espacios de permutaciones noes reciente e incluye diferentes modelos. Los m¿as destacados son los modelosbasados en pares de comparaciones, los modelos de Thurstone, Plackett-Lucey los modelos basados en distancias. Esta tesis se dedica a ¿estos ¿ultimos yextensiones sobre los mismos.Los modelos basados en distancias son de la familia de los exponenciales. Suforma general se denomina modelo de Mallows (MM) en honor al autor que lospropuso originalmente. La definici¿on formal de un MM es la siguiente:p(") =exp(