Parallel prefix operations on heterogeneous platforms
- Pérez Diéguez, Adrián
- Ramón Doallo Codirector
- Margarita Amor Codirectora
Universidad de defensa: Universidade da Coruña
Fecha de defensa: 17 de enero de 2019
- Enrique Salvador Quintana Ortí Presidente/a
- Patricia González Secretaria
- Bertil Schmidt Vocal
Tipo: Tesis
Resumen
Las tarjetas gráficas (GPUs) han demostrado gmndes ventajas en el rendimiento computacional y en la eficiencia energética, siendo una tecnología clave para la computación de altas prestaciones (HPC). Sin embargo, esta tecnología también es costosa de progTamar, y tiene ciertos problemas asociados a la portabilidad de sus códigos entre diferentes generaciones de tarjetas. Por otra parte, los algoritmos de prefijo paralelo son un conjunto de algoritmos regulares y muy utilizados en las ciencias computacionales, cuya eficiencia es crucial en muchas aplicaciones. Aunque las GPUs puedan acelerar la computación de estos algoritmos, también pueden ser una limitación si no explotan correctamente el paralelismo de la arquitectura CPU. Esta Tesis presenta dos perspectivas. De un lado, se han diseñado nuevos algoritmos de prefijo paralelo que pueden ser implementados en cualquier paradigma de programación paralela. Por otra parte, se propone una metodología general que implementa eficientemente algoritmos de prefijo paralelo, de forma sencilla y portable, sobre cualquier arquitectura GPU CUDA, sin centrarse en un algoritmo particular o en un modelo de tarjeta. Para ello, la metodología identifica los parámetros GPU que influyen en el rendimiento y, siguiendo un conjunto de premisas teóricas, obtiene los valores óptimos para cada algoritmo, tamaño de problema y arquitectura. Además, las funciones GPU proporcionadas están compuestas de bloques de código CUDA reutilizable y modular, lo que permite la implementación de cualquier algoritmo de prefijo paralelo sencillamente. Dependiendo del tamaño del problema, se proponen tres aproximaciones. Las dos primeras resuelven tamaños pequeños, medios y grandes, utilizando para ello una única GPU i mientras que la tercera aproximación trata con tamaños extremadamente grandes, usando varias GPUs. Nuestras propuestas proporcionan resultados muy competitivos, mejorando el rendimiento de las propuestas existentes en la bibliografía para las operaciones probadas: la primitiva sean, ordenación y la resolución de sistemas tridiagonales.