Compositional language processing for multilingual sentiment analysis

  1. Vilares Calvo, David
Dirigida por:
  1. Miguel Á. Alonso Codirector
  2. Carlos Gómez Rodríguez Codirector

Universidad de defensa: Universidade da Coruña

Fecha de defensa: 21 de junio de 2017

Tribunal:
  1. Yulan He Presidente/a
  2. Javier Parapar Secretario
  3. Alexandra Balahur Dobrescu Vocal
Departamento:
  1. Ciencias de la Computación y Tecnologías de la Información

Tipo: Tesis

Teseo: 485934 DIALNET lock_openRUC editor

Resumen

Esta tesis presenta nuevas técnicas en el ámbito del análisis del sentimiento y la clasificación de polaridad, centradas en obtener el sentimiento de una frase, oración o documento siguiendo enfoques basados en procesamiento del lenguaje natural. En concreto, nos centramos en desarrollar métodos capaces de manejar la semántica composicional, es decir, con la capacidad de componer el sentimiento de oraciones donde la polaridad global puede ser distinta, o incluso opuesta, de la que se obtendría individualmente para cada uno de sus términos; y cómo dichos métodos pueden ser aplicados en entornos multilingües. En la primera parte de este trabajo, introducimos aproximaciones basadas en conocimiento para calcular la orientación semántica a nivel de oración, teniendo en cuenta construcciones lingüísticas relevantes en el ámbito que nos ocupa (por ejemplo, la negación, intensificación, o las oraciones subordinadas adversativas). En la segunda parte, describimos cómo construir clasificadores de polaridad basados en aprendizaje automático que combinan información léxica, sintáctica y semántica; centrándonos en su aplicación sobre textos cortos y de pobre calidad gramatical. Los experimentos realizados sobre colecciones estándar y competiciones de evaluación internacionales muestran la efectividad de los métodos aquí propuestos en entornos monolingües, multilingües y de code-switching. Las contribuciones presentadas en esta tesis tienen diversas aplicaciones en la era de la Web 2.0 y las redes sociales, como determinar la opinión que la sociedad tiene sobre un producto, celebridad o evento; identificar sus puntos fuertes y débiles o monitorizar cómo estas opiniones evolucionan a lo largo del tiempo. Por último, también mostramos cómo algunos de los modelos propuestos pueden ser útiles para otras tareas de análisis de datos.