Tissue-scale, patient-specific modeling and simulation of prostate cancer growth

  1. Lorenzo Gómez, Guillermo
Dirixida por:
  1. Héctor Gómez Díaz Director

Universidade de defensa: Universidade da Coruña

Fecha de defensa: 25 de xuño de 2018

Tribunal:
  1. Fermín Navarrina Martínez Presidente
  2. Alicia Martínez Gónzalez Secretario/a
  3. Carlotta Giannelli Vogal
Departamento:
  1. Matemáticas

Tipo: Tese

Teseo: 560345 DIALNET lock_openRUC editor

Resumo

O cancro de próstata é un gran problema de saúde en homes de idade avanzada en todo o mundo. Esta patoloxía é máis fácil de curar nos seus estadios iniciais, cando aínda é órgano-confinada. Porén, case nunca produce ningún síntoma ata que é demasiado grande ou ten invadido outros tecidos. Polo tanto, o enfoque actual para combater o cancro de próstata é unha combinación de prevención e exames rutinarios para unha detección precoz. De feito, a maioría de casos de cancro de próstata son diagnosticados e tratados cando aínda está localizado dentro do órgano. Malia a riqueza do coñecemento acumulado sobre as bases biolóxicas e a xestión clínica da doenza, carecemos dun modelo teórico completo no que podamos organizar e comprender a enorme cantidade de datos existentes sobre o cancro de próstata. Ademais, a práctica clínica estándar en oncoloxía está baseada en gran medida en patróns estatísticos, o cal non é suficientemente preciso para individualizar a diagnose, a predición da prognose, o tratamento e o seguimento. Recentemente, a modelización e a simulación matemáticas do cancro e os seus tratamentos permitiron predicir resultados clínicos e o deseño de terapias óptimas de forma personalizada. Esta nova corrente de investigación médica denomínase oncoloxía matemática. O cancro de próstata é un candidato ideal para beneficiarse desta tecnoloxía por varios motivos. En primeiro lugar, un enfoque clínico personalizado podería contribuír a reducir as taxas de tratamento excesivo ou insuficiente de cancro de próstata. A resonancia magnética multiparamétrica úsase cada vez máis para monitorizar e diagnosticar esta enfermidade. Esta tecnoloxía de imaxe pode proporcionar abundante información para construír un modelo matemático de crecemento de cancro de próstata personalizado. Ademais, a próstata é un órgano suficientemente pequeno para perseguir a realización de simulacións preditivas a escala tisular. O crecemento do cancro de próstata tamén se pode estimar usando a concentración en sangue dun biomarcador coñecido como o antíxeno prostático específico. Adicionalmente, algúns pacientes de cancro de próstata non reciben tratamento pero son monitorizados clinicamente e se lles toman imaxes médicas periodicamente, o que abre a porta á validación in vivo de modelos. O desenvolvemento de tecnoloxías versátiles e potentes en mecánica computacional permite facer fronte aos retos derivados da anatomía prostática e a resolución dos modelos matemáticos. Finalmente, as tecnoloxías de oncoloxía matemática poden guiar as investigacións futuras sobre cancro de próstata, por exemplo, propoñendo novas estratexias de tratamento ou descubrindo mecanismos involucrados no crecemento tumoral. Polo tanto, o obxecto desta tese é proporcionar un marco computacional para a modelización e simulación do crecemento do cancro de próstata órgano-confinado de forma personalizada e a escala tisular dentro do contexto da oncoloxía matemática. Presentamos un modelo de crecemento de cancro de próstata localizado que reproduce os patróns de crecemento da enfermidade observados en estudos experimentais e clínicos. Para capturar as dinámicas acopladas dos tecidos san e tumoral, usamos o método de campo de fase xunto con ecuacións de reacción-difusión para o consumo de nutriente e a produción de antíxeno prostático específico. Empregamos este modelo para realizar as primeiras simulacións personalizadas a escala tisular do crecemento de cancro de próstata sobre a anatomía do órgano extraída de imaxes médicas. Os nosos resultados amosan unha progresión tumoral similar á observada na práctica clínica. Utilizamos a análise isoxeométrica para resolver a non-linealidade do noso sistema de ecuacións, así como a complexa anatomía da próstata e as intricadas morfoloxías tumorais. Adicionalmente, propoñemos o uso de adaptatividade dinámica de malla para acelerar os cálculos, racionalizar os recursos computacionais e facilitar a simulación nun tempo clinicamente relevante. Presentamos un conxunto de algoritmos eficientes para introducir o refinamento e o engrosado locais tipo h en análise isoxeométrica. Os nosos métodos están baseados na proxección de Bézier, que estendemos aos espazos de splines xerárquicas. Tamén introducimos un parámetro de balance para controlar a superposición de funcións de base a través dos niveis da xerarquía, o cal conduce a un condicionamento numérico mellorado. As nosas simulacións de crecemento de cancro amosan unha notable precisión con moi poucos graos de liberdade en comparación coa malla uniforme que a mesma simulación requiriría. Finalmente, estudamos a interacción entre o cancro de próstata e a hiperplasia benigna de próstata, outra patoloxía prostática común que fai crecer ao órgano gradualmente. En particular, investigamos por que os tumores que se orixinan en próstatas máis grandes presentan características patolóxicas favorables. Realizamos un estudo de simulación cualitativo estendendo o noso modelo matemático de crecemento de cancro de próstata para incluír as ecuacións de equilibrio mecánico e os termos de acoplamento entre estas e a dinámica tumoral. Asumimos que a deformación da próstata é un fenómeno cuasiestático e modelamos o tecido prostático como un material elástico lineal, heteroxéneo e isotrópico. Este modelo é calibrado estudando a deformación causada por cada enfermidade independientemente. As nosas simulacións amosan que un historial de hiperplasia benigna de próstata crea campos de tensión mecánica na próstata que obstaculizan o crecemento do cancro de próstata e limitan a súa invasividade.