Redes neuronales para regresión y clasificaciónnuevos algoritmos y aplicaciones

  1. MATÍAS FERNÁNDEZ, JOSÉ MARÍA
Dirixida por:
  1. Wenceslao González Manteiga Director
  2. Antonio Vaamonde Liste Co-director

Universidade de defensa: Universidade de Santiago de Compostela

Fecha de defensa: 12 de decembro de 2003

Tribunal:
  1. José Manuel Prada Sánchez Presidente/a
  2. Manuel Febrero Bande Secretario/a
  3. Domingo Morales González Vogal
  4. Javier Taboada Castro Vogal
  5. Ricardo Cao Abad Vogal

Tipo: Tese

Resumo

La tesis recoge una exposición sistemática del estado del arte de los modelos y algoritmos de redes neuronales en el marco de la teoría del aprendizaje estadístico, incluyendo los algoritmos Boosting. Como aportaciones relevantes destacan las siguientes: 1,- La clarificación de las relaciones entre las redes RRBF de regularización, las Support Vector Machines y el Kringing. 2,- La utilización del covariograma como núcleo en las arquitecturas radiales, bajo un contexto bayesiano, que permite incorporar al modelo la estructura de asociación provocada por la hipótesis de tendencia, y mejora los resultados obtenidos con núcleos estándar isotrópicos. 3,- El Kriging Regulariado como resultado de la aplicación de la metodología de los support vectors al Kriging, obteniéndose como casos particulares el Kriging Simple y el Kriging Universal, así como la regresión bayesiana con prior gausiana para los parámetros. 4,- Un algoritmo LS-Boost que utiliza como "weak learners" redes neuronales RBF sobre proyecciones en el esapcio de centrada. 5,- Una batería de algoritmos para series de tiempo heterocedásticas: A,- Modelos de redes neuronales para tendencia-varianza entrenadas simultáneamente mediante verosimilitud gausiana. B,- La generalización del algoritmo Gradient-Boost para varias hipótesis, específicamente para tendencia-varianza simultáneas, utilizando como "weak learners" redes neuronales RBF y MLP, y técnicas ARMA-GARCH, éstas últimas con el fin de modelizar la posible heterocedasticidad de la serie del gradiente heredada de la serie original. C,- Algoritmo WildBoostGarch como resultado de aplicar sucesivamente modelos GARCH a la discrepancia entre resíduos al cuadrado y varianza recogida en las iteraciones anteriores. 6,- Aplicación de los algoritmos anteriores a un problema de predicción en Mercados Financieros tanto sobre conjuntos artificiales de datos como una serie de datos reales del ín