Localización de Bousfield en categorías derivadas de categorías de Grothendieck

  1. Souto Salorio, María José
Dirigida por:
  1. Leovigildo Alonso Tarrío Director/a
  2. Ana Jeremías López Director/a

Universidad de defensa: Universidade de Santiago de Compostela

Año de defensa: 1997

Tribunal:
  1. Emilio Villanueva Novoa Presidente/a
  2. José María Barja Pérez Secretario
  3. Adolfo Quirós Gracián Vocal
  4. Pascual Jara Martínez Vocal
  5. Agustí Roig Martí Vocal

Tipo: Tesis

Teseo: 64217 DIALNET

Resumen

Es una técnica bien conocida en homotopía estable la localización asociada a una teoría de homología o, equivalentemente, a la subcategoría localizante generada por el objeto que la representa, Este teorema de existencia fue probado por Bousfield en 1979. El presente trabajo aborda la demostración del resultado análogo para las categorías derivadas de una categoría de Grothendieck (es decir, abeliana, con generador y límites directos filtrantes exactos) y la obtención de algunas aplicaciones. En el primer capítulo se realiza una exposición de los conceptos que se van a emplear: categorías triangulares, categorías homotópica y derivada asociadas a una categoría abeliana, sus subcategorías gruesas y funtores derivados. El segundo trata del concepto general de localización en categorías triangulares y de la noción de subcategoría localizante. A continuación se define el concepto de límite directo homotópico en categorías de complejos. Se comprueba que la construcción es isomorfa al límite directo usual en la categoría derivada y, en el caso en que el conjunto filtrante es bien ordenado y los morfismos del sistema semirrotos, también es isomorfa en la categoría homotópica. Esto permite probar que las subcategorías localizantes son cerradas para los límites directos (filtrantes) usuales. En el capítulo 4 se demuestra la existencia de localización en categorías homotópicas siguiendo un método próximo al original de Bousfield. Como consecuencia, se obtienen las resoluciones q-proyectivas en la categoría homotópica de módulos sobre un anillo o, más generalmente, q-plana en la categoría homotópica de haces de módulos sobre un espacio anillado. A continuación se obtienen las resoluciones q-inyectivas en la categoría homotópica de una categoría de Grothendieck y la localización de Bousfield en la correspondiente categoría derivada. Finalmente, como aplicación se obtiene una car